


This report  was prepared F S  an account of Government-sponsored 
work. Neither the United States ,  nor the Natlonal Aeronautics 
and Space Administration (NASA) ,  nor  any person acting on be- 
half o f  NASA: 

A . )  Makes any warranty o r  representation, expressed or 
implied, with respect t o  the accuracy, completeness I) 

o r  usefulness of the information contained i n  t h i s  
report ,  o r  t h a t  the use of any information, apparatus, 
method, o r  process disclosed i n  t h i s  report  may not 
infringe.  privately-owned r ights  ; or  

B.) Assumes any l i a b i l i t i e s  with respect t o  the use of ,  or 
f o r  damages resul t ing from the use o f ,  any information, 
apparatus, method o r  process disclosed i n  th i s  report .  

As used above, "person acting on behalf of NASA" includes any  em- 
ployee or contractor of NASA, o r  employee o f  such contractor,  t o  
the extent t h a t  such employee o r  contractor of NASA or employee 
o f  such contractor preparesg disseminates, or  provides access t o  
any information pursuant t o  t h i s  employment or contract  with 
NASA, or his employment with such contractor.  

Requests for copies of th i s  report should be referred t o  

National Aeronautics and Space Administration 
Scienti f i  c and Techni cal Informati  on Faci 1 i t y  
P. 0. Bnx 33 
College Park,  Md, 20740 



bY 
urns, a Jones, R. W. Vaugh 

SYSTEMS GROUP 

O N E  S P A C E  P A R K  e R E D O N D O  B E A C H  e C A L I F O R N I A  

prepared for 

NATIONAL AER E ADMINISTRATI 





NASA CR-72633 
11 926-601 3-RO-00 

FOREWORD 

This document const i tutes  the f ina l  report  f o r  the work accomplished 
between 1 7  September 1968 and 17 November 1969 by TRW Systems f o r  the 
National Aeronauti cs and Space Admi nis t r a t i  on, Lewis Research Center under 
Contract NAS3-12412 on Thermally Stable Laminating Resins e 
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THERMALLY STABLE LAMINATING RESINS 

by 

E ,  A, BurnsS R .  J .  Jones, R .  W .  Vaughan, and W .  P .  Kendrick 

AB ST RACT 

The TRW A-type polyimide resin 
composites were investigated. Detail 

and resin 
d synthesi 

re i  nforced 
and char- 

acter izat ion s tudies  were conducted which defined a r e a l i s -  
t i c  mechanism of pyrolytic polymerization employing model 
compounds and ident i f ied a superior A-type polyimide formu- 
la t ion  from six candidate prepolymers and polymers. E-glass 
laminate processing and characterization studies employing 
the ident i f ied polyimide formulation, were conducted t o -  
gether with studies of h i g h  performance, h i g h  modulus 
graphite reinforced composites . 
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THERMALLY STABLE LAMINATING RESINS 

E. A. Burns, R .  J .  Joness R .  W, Vaughan and W. P, Kendrick 

SUMMARY 

This report  is the f ina l  program report describing the work performed 
by TRW Systems f o r  the National Aeronautic$ and Space Administration, Lewis 
Research Center, under Contract NAS3-7949. The  principal objective of t h i s  
program was t o  develop thermally s tab le  laminating resins (minimum 450°F) 
t h a t  possess improved processabi 1 i t y  over t h a t  of currently avai 1 ab1 e poly- 
mers. This objective was accomplished with a )  suppor t  of detai led s tudies  
which determi ned a pos tu1 ated pyrolytic polymeri zation mechanism through 
synthesis and characterization of model compaunds and t h e i r  pyrolyzed pro- 
ducts, b )  polymer synthesis and characterization studies s c)  preliminary 
glass reinforced prepreg and laminate fabr icat ion studies and d )  evalua- 
t ion o f  graphite f i b e r  reinforced composite properties a 

The f i r s t  phase of the work involved the synthesis and characteriza- 
t i o n  of model compounds. In th i s  study twg model imides which simulate the 
TRW A-type polyimide prepolymers were synthesized, characterized and sub-  
sequently subjected t o  detailed pyrolysis studies in  the temperature range 
of 250°C - 350°C. The l inear  polymers prepared by the pyrolysis studies 
were characterized i n  de ta i l  and the resu l t s  permitted interpretat ion of 
the pyrolytic polymerization mechanism. 
la ted t h a t  the A-type polyimide model compound, N-phenyl nadimide was 
polymerized by an addition-type reaction encompassing f i r s t  a par t ia l  re- 
verse Diels-Alder reaction t o  give f r ee  cyclopentadiene and N-phenyl male- 
imide followed by the i n  s i t u  eo- and terpolymerization of the fragments 
and unreacted model compound. 
>275"C i s  required to  convert the model compound t o  polymeric s t ructures .  
From these studies the nadimide end group was selected as an e f f i c i e n t  
reactive species f o r  the pyrolytic polymerization. 

From these studies i t  was postu-  

I t  was established tha t  a temperature of 

vi i 
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The second phase consisted of investigations i n v o l v i n g  candidate pre- 
polymers. 
prepolymers derived from a combination of aromatic dianhydrides and aroma- 
t i c  diamines were conducted t o  s e l e c t  spec i f ic  ingredients providing the 
most promising candidate material based on thermo-oxidative and hydrolytic 
stabi 1 i t y  as we1 1 as processing considerations e 

i f f e ren t  formulated molecular wei g h t s  were prepared and the polymerized 

Screening and characterization s tudies  of six A-type polyimide 

Several prepolymers of 

oducts were characterized to  determine the e f f e c t  of prepolymer molecul a r  
wei gh t on polymer properties e 

From these screening s tudies  the select ion of an A-type polyimide 
formul a t i  on havi ng 1000 molecul a r  wei g h t  consi s t i n g  of nadi c anhydri de end 
groups methylene d i  ani  1 i ne and pyromel 1 i ti c d i  anhydride (NA/MDA/PMDA) was 
selected as the most promising preDolvmer, T h i s  se lect ion was based on the 
results of processabili t y s  thermo-oxidative s t a b i l i t y  and hydrolytic s t a -  
b i l i  t y  determinations e 

In the t h i r d  phase of this project  preliminary fabricat ion s tudies  
were conducted 1 ) t o  determi ne processi ng condi t i  ons w h i  ch resul ted i n 
acceptable prepregs sui tab le  f o r  preparati on of glass rei nforced 1 ami nates 
and 2 )  t o  es tab l i sh  molding conditions which gave the best combination of 
glass reinforced laminates properties 
four minutes drying a t  325°F and two minutes imidizat-ion a t  475°F were se- 
lected based on a previously determined vo la t i l e  matter/resin content r a t i o ,  
flow properties and general appearance e Process moldi ng conditions which 
showed the best combination of flexural properties a t  room temperature and 
550"F, room temperature shear strength and minimum void contents by s t a t i s -  
ti cal evaluation were 600°F mol d ing  temperature, 1000 psi g appl i ed mechani - 
cal pressure, 30 minutes processing duration and no pos t  cure. 

Prepreg processing conditions of 

B ecawse o f  the  si g n i  f i  cant progress achi eved i n  i den t i  fyi ng a materi a1 
having superior h i  gh temperature properties w i  t h  glass r e i  nforced 1 ami nates 
the original scope of the fourth phase of the program was modified t o  per- 
mi  t acqwisi ti on of detai led property data from lami nates prepared us ing  
Yhornel 50s h i g h  modulus graphite f i b e r  and the 1000 formulated molecular 
wei g h t  NA/MDA/PMDA resi n Graphi t e  f i b e r  reinforced prepreg was prepared 

v i i i  
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u s i n g  a drum winding spray gun application procedure (previously developed 
for boron reinforced prepregs) e The unidirectional prepreg prepared by this 
technique had excellent collimation and showed no pparent yarn fraying e 

After some cursory examinations of imidiration processes i t  was 
cided n o t  t o  use a d i s t i n c t  separate imidization procedure b u t  ra ther  imi- 
dize the prepreg i n  situ d u r i n g  the molding cycle. 
study of the cure temperature, cure pressure and dwell time varjables,  the 
best combination of molding conditions were determined t o  be 600°F temperoa- 
t u re s  500 ps ig  pressure, and 50 seconds dwell time, Techniques were de- 
veloped involving control of cool-down ra t e  and u t i l i za t ion  of an oversize 
mold t o  compensate f o r  expansion of the graphite f ibe r  on cooling; this 
methodology permitted preparation of crack-free Thornel %OS graphite f i b e r  
reinforced composites e 

In a brief screening 

Room temperature properties of these composites had f lexural  strength 
and modulus values of 105 Ksi and 23 s i  respectively,  and 5 Ksi shear 
strength.  
ble a f f ec t  on properties.  A t  600°F the flexural strength retention was 
%80%, flexural modulus retention was %85% and the shear strength retention 
was ~74%. Aging the specimens a t  600°F caused s igni f icant  degradation of 
rnechani cal properties.  This f i  ndi ng was contrary t o  the observation of 
the s t a b i l i t y  o f  the neat res in .  A detai led analysis of this observation 
showed t h a t  the properties o f  specimens aged a t  elevated temperature i n  
a i r  are  highly dependent on the surface area t o  volume r a t i o  and the r a t e  
of a i r  flow by the sample. 

Aging the specimens a t  400°F for  over 1000 hours showed negligi-  

i X  
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1 e INTRODUCTION 

This f ina l  report  presents the work accomplished by TRW Systems f o r  
the National Aeronautics and Space Administration Lewis Research Center 
under Contract NAS3-12412 dur i  ng the period 17 September 1968 th rough  
17 December 1969. T h i s  program consisted of experimental studies aimed 
towards the development of thermally s t ab le  laminating resins (minimum 
450°F) t h a t  possessed processabi 1 i ty  improved over currently available 
polymers 
ment of h i g h  performance resin-f iber  composites f o r  use i n  a i r  breathing 
engine systems which would permit s ign i f icant  system advantages ( h i g h  
strength-to-densi t y  ra t ios  h i g h  modulus-to-density ra t ios  excellent damp- 
i ng characteri s ti  cs and 1 ow costs ) . 

The underlying motivation fo r  conducting t h i s  program is  develop- 

Over the past  few years,  several new aromatic and heterocyclic poly- 
mer systems were developed which o f fe r  thermal s t a b i l i t y  i n  the 500°F - 
600°F temperature range. These systems offer potential as res in  matrices 
f o r  the advanced composite materials needed f o r  the h i g h  performance a i r  
breathing engine system use. In a previous NASA contract (NAS3-7949) ad- 
dressed towards improved ab1 a t i  ve resin sys tems (Reference 1 ) TRW developed 
a new polyimide resin system which offered d i s t i n c t  advantages i n  processing 
over the then currently available polymers based on a condensation cure. 
This new polymer system was designed t o :  

Cure w i t h  the evolution of minimal vo la t i l e  matter 

Form from precursors t h a t  a re  oxidatively,  thermally and 
hydrolytically s tab le  both i n  solution and so l id  s t a t e  
form 

Require no post cure 

The new resin systemg termed A-type polyimide, i s  formed by a curing 
mechanism which is  believed t o  be un ique  i n  polymer a r t ,  namely, pyrolytic 
polymeri zat i  on. 
sol ubl  e 1 ow mol ecul a r  wei gh t polyimide prepolymers havi ng a1 i cycl i c ri ngs 
a t  the terminal posit ions.  
the formation of macro molecules -- i n  situ. The polymerization o f  these pre- 
polymers was found t o  meet the properties delineated above and f i b e r  -rein- 
forced lami nates were processed w i t h  re la t ive  ease 

Speci f i  cal ly  the technique involves the preparati on of 

I t  was found tha t  pyrolysis o f  polymers caused 

-1  - 
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The A-type polyimide system has been carried t o  a fur ther  degree of 
advancement by TRW Sys tems through extensive devel opment s tudies  w i t h  the 
aim of determining i t s  commercial potent ia l .  The past  TRW studies provided 
a sound foundation t o  b u i l d  upon f o r  improving the processabili ty and en- 
hanci ng thermal s tabi 1 i t y  of this new polymer sys tem $ 

In the program reported here the pyrolytic polymerization reaction 
was investigated through polyimide model compounds. The mode of reaction 
was investigated together w i t h  the hydrolytic, thermo-oxidative s t a b i l i t i e s  
of  the pyrolyzed product. The information obtained from the model compound 
s tudies  was u t i l i zed  t o  guide the synthesis of prepolymers and polymers e 

The ease of conversion of the polyimide precursor (amic-acid) t o  form the 
fu l ly  cured imide was studied together w i t h  the conditions necessary f o r  the 
subsequent conversion t o  cured polyimide polymer. 

Key process variables were investigated t o  determine the degree of i m -  
provement afforded by the chemical backbone used i n  the preparation of the 
new polyimide polymers . Glass reinforced composites were prepared u s i n g  
prepolymers which offered the highest promise for  further improvement i n  
processi ng and thermo-oxi dati  ve s tabi 1 i t y  . 
fabr ic  and graphite f i b e r  reinforced composites were determined a t  room and 
elevated temperatures and the resu l t s  of these studies were assessed i n  terms 
of operational properties and processing condi ti  ons . From t h i  s key experi - 
mental program recommendations f o r  future  processing and fur ther  product i m -  
provements i nves t i  gat i  ons have been generated e 

Mechanical properties o f  gl ass 

This report  i s  divided in to  four p r i  nci pal sections covering consecu- 
t ive  Program tasks: 1 )  synthesis and characterization of model compounds, 
2 )  polymer synthesis and characterization studies 3)  preliminary fabrica- 
t i  on studies and 4)  evaluation of composi te properties.  

The s igni f icant  conclusions reached from evaluation and assessment of 
the resul t s  are  1 is ted together w i  t h  the recommendations f o r  a c t i v i t i e s  
tha t  warrant fur ther  investigation. T h i s  report  ident i f ies  i n  a separate 
section the new techno1 ogy ori  g i  nati ng from the program. The i nformati on 
presented in the main body of this report  i s  supplemented by appendices 
covering detailed descriptions of procedures equipment, and s t a t i s t i c a l  
evaluation of t e s t  data. 

-2- 
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2. SYNTHESIS AND CHARACTERIZATION OF MODEL COMPOU 

2.1 MODEL COMPOUND SYNTHESIS 

The synthetic methods used t o  prepare the model compounds employed i n  
Task I pyrolyses s tudies  are detai led in  Appendix A. The two model com- 
pounds ?) N-phenyl nadimide ( I )  and N-phenyl oxynadimide (11) % used exten- 
sively throughout the Task I studies are  shown below. 

0 
I I  

0 
II 

C C 

C C 

0 0 

N-phenyl Hadimide N-phenyl Oxynadimi de 

I I  I I  

I I1 

One pyrolysis experiment was performed w i t h  H-phenyl maleimide (111) 
f o r  product comparative purposes. T h i s  material was purchased commercially 
and recrystal l ized pr ior  t o  use. Another model compound used only fo r  com- 
parative spectral  purposes as described i n  Appendix C, Page 110, was N -  
phenyl 2-methylsuccinimide (IV) prepared by the synthetic method described 
on Page 71 from 2-methylsuccinic anhydride and ani l ine.  
(111) and (IV) a r e  presented below, 

The s t ruc ture  fo r  

0 
If 

0 

I11 
N-phenyl Maleimide 

0 
II 
I- 

l l  

0 

I V  
N-phenyl 2-Methyl succi nimi de 
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2.1 e 1 Model Compound Characterization 

The two model compounds N-phenyl nadimide ( I )  and N-phenyl oxynadi - 
mide (11), synthesized f o r  use i n  the pyrolyses studies, were characterized 
prior t o  pyrolysis, Characterlmation included melting p o i n t  (d i f fe ren t ia l  
scan calorfmetry) , u l t r av io l e t ,  infrared, nuclear magnetic resonances and 
elemental analyses themo-oxidatlve s t a b i  1 i t ies (themogravimetri c analy- 
ses i n  ni t rogen and a i r )  and hydrolytic s t a b i l i t y  (two-hour water b o i l ) .  
The resu l t s  of these characterization studies a re  given i n  de ta i l  i n  
Appendix A.  

2.2  PYROLYSIS OF MODEL COMPOUNDS 

2.2.1 Pyrglysis Methodology 

The experimental set-up used f o r  the model imide pyrolysis studies i s  
shown i n  Figure 1.  The operation o f  the apparatus and pyrolysis methodo- 
logy are described below. I n  this description, sections o f  the apparatus 
are ident i f ied by reference t o  Figure 1 by l e t t e r  &signat ion .  

A weighed sample of model imide i s  placed i n  the sample t u b e  ( A )  and 
the en t i r e  system i s  purged w i t h  nitrogen. After purg ing ,  the system is  
evacuated to  $1 t o r r  w i t h  an e f f i c i e n t  vacuum pump (B-vacuum l ine )  and the 
system is  closed. A crucible furnace ( C )  i s  preheated t o  test  temperature 
and i s  then p u t  in to  place so i t  completely envelops the sample tube con- 
taining the sample t o  i n i t i a t e  the pyrolysis experiment, The temperature 
inside the sample t u b e  is monitored by a thermometer (0). The sample temp- 
erature  and the time from reaction i n i t i a t i o n  are recorded a t  frequent i n -  
tervals  dur ing  the experiment along w i t h  the system pressure (measured by 
manometer E) .  A t  the end of a predetermined time period, t h @  stopcocks t o  
the gas collection bulbs (F)  are  closed, the tube  furnace i s  removeds and 
the system i s  allowed t o  slowly cool. When the temperature has reached 
25-3OoC i n  the sample tube, the pressure i n  the system i s  adjusted t o  a t -  
mospheric pressure w i t h  a nitrogen purge. The so l id  pyrolysis residue and 
any sublimed material are then isolated separately as well as any l i q u i d  
material trapped i n  a cold t rap  ( G )  and a l l  samples are  numbered f o r  char- 
acter izat ion.  
given i n  Appendix B. 

The equation employed fo r  calculation of gas quant i t ies  i s  

-4- 
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For convenience and cl a r i  t y  i n  subsequent discussions of the pyrolysis 
experiments and the conditions employed, a code was devised which in  four  
sequenti a1 characters provi de the key i nformati on regardi ng model compound 
and pyrolysis conditions. The f i r s t  character i s  a Roman numeral and iden- 
t i f i e s  the model compound: I=N-phenyl nadimide TIEN-phenyl oxynadimide, 
and III=N-phenyl maleimide. The second character i s  a three-digi t number 
re1 a t i  ng t o  the pyrolysis temperature i n  degrees Centi grade 
character gives the pyrolysis duration i n  hours and the fourth character 
i den t i f i e s  the atmospheric environment on onset of pyrolysis,  i . e . ,  vacuum 
( V )  o r  760 t o r r  nitrogen ( N ) .  For example, pyrolysis of N-phenyl nadimide 
( I )  a t  3OOOC f o r  three hours t h a t  had vacuum as the environment a t  onset t o  
pyrolysi s i s  termed 1-300-34 e 

The t h i  rd  

2.2 e 2 Pyrolysi s of N-phenyl Nadi m i  de 

I n i t i a l  experiments on the pyrolysis of N-phenyl nadimide ( I ) ,  Runs 
20 and 21 (I-350-2-V and 1-350-3-V), i n  which pyrolysis products were not 
recovered showed t h a t  polymeric matter was obtained and permitted checking 
out the general operation of the pyrolysis chamber a 

addi t i  onal pyrolysis experiments were conducted. 

la ted i n  Table I and show t h a t  essent ia l ly  quant i ta t ive recovery of products 
was achieved. The small deviation from quant i ta t ive recovery m i g h t  be a t -  
t r ibuted t o  one o r  more of the following, 1 )  condensation o f  l iquid on sur- 
face other than i n  the cold t rap  or section where the sublimed matter was 
col lected,  2)  deposition o f  small quant i t ies  of sublimated matter a t  loca- 
t ions other than were isolated and weighed, and/or 3)  deviation from the 
ideal gas law. Table I provides information concerning the pyrolysis con- 
d i t i o n s ,  and the weight  d i s t r ibu t ion  of the original quantity,  Wo, through 
the system a f t e r  pyrolysis i n  e i t h e r  the pyrolysis tube residue weight (W,) 
sublimed weight on the neck o f  the pyrolysis chamber (W,) collected i n  the 
cold t rap  (W,) o r  t ha t  located i n  the gas phase ( W  ) *  

From the data l i s t e d  i n  Table I i t  i s  seen t h a t  a t  a constant tempera- 
ture, a greater  residue weight, Wr  is observed when the i n i t i a l  atmospheric 
environment is nitrogen (Samples 32 and 42).  

Subsequently, seven 
Thei r r e su l t s  are tabu- 

g 

Comparison o f  the 300°C 

-6- 
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pyrolysis conditions (Samples 59 and 66) shows t h a t  a greater  amount of 
material i s  evolved from the pyrolysis tube the longer the pyrolysis i s  
continued. Finally,  i t  may be concluded t h a t  for Sample 44 (I-275-2-V) 
considerable amount of sublimation (W,) occurred indicating t h a t  pyrolytic 
polymerization of the reactive a l i cyc l i c  groups occurs t o  a greater  extent 
a t  300°C than a t  275°C. 
the vacuum (or reduced pressure environment dur ing  pyrolysis) i s  highly 
s igni f icant  in the i n te rpre ta t i  on o f  the mechanism of the pyrol y t i  c polymeri - 
zation discussed i n  Section 2.4. 

The f i n d i n g s  t h a t  polymeric matter was formed i n  

2.2.3 Pyrolysis of IV-phenyl Oxynadimide 

The r e s u l t  of the pyrolysis investigations of N-phenyl oxynadimide 
(11) are tabulated i n  Table 11. 
the t o t a l  gaseous products i n  the i n i t i a l  experiments (Samples 22-30) be- 
cause of the v o l a t i l i t y  of furane (VI). 
and 68) the recovery of the pyrolytic products was nearly quant i ta t ive.  
These samples gave evidence f o r  %95% loss of (VI) d u r i n g  pyrolysis and no 
evidence of furane i n  the polymeric product (see Appendix C ) .  Because i t  
appeared tha t  f o r  the pyrolysis of (11) tha t  the reverse Diels-Alder reac- 
t ion t o  form (VI) and N-phenyl maleimide (111) occurs a t  a lower temperature 
than t h a t  of the pyrolytic polymeritation react iong an experiment on the 
d i r ec t  pyrolysis of (111) was conducted under s imilar  conditions t o  permit 
comparison of the products. 
included in Table 11. 

I t  was extremely d i f f i c u l t  to  account for 

However, i n  l a t e r  experiments( 47 

The resu l t s  of the pyrolysis of (111) are  a lso 

2.3 PYROLYSIS PRODUCT CHARACTERIZATION 

The residue sub1 imed matter trapped materi a1 and gaseous pyrolytic 
products have been characterized by a variety o f  means. Primary emphasis 
has been placed on the characteri zat i  on of the pyrolyti c residue because 
of i t s  relationship t o  the polymeric matter produced on curing the A-poly- 
imide prepolymers. the de- 
gree o f  polymerization i s  considerably less  t h a n  t ha t  which occurs on 

Because the model compound i s  mono functional 
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curing the A-type polyimide prepolymers thereby forming a l i nea r s  t rac tab le  
low mol ecul a r  wei g h t  polymer which permi ts detai 1 ed characteri za t i  on Char- 
acter i  zati  on of the sub1 imed matter s trapped materi a1 and gaseous products 
consisted principally only of  quantitative analysis t o  permit material bal- 
ance cal cul a t i  ons . 

The pyrolyses residues obtained from the experiments conducted on N -  
phenyl nadimide ( I )  and N-phenyl oxynadimide (11) l i s t e d  in Table I and 11, 
respectively, were subjected t o  detailed characterization e Methods included 
elemental analysis molecular weight determi nations by vapor phase osmometry 
and gel permeation chromatography unsaturati on content by bromi ne absorp- 
ti ong st ructure  determination 
analysis 
s t a b i l i t y  t o  bases by saponification. 
in  detai l  i n  Appendix C .  

by i nfrared and nuclear magnetic resonance 
thermo-oxidati ve stabi l i  ty  by thermogravimetri c analysi s and 

The data are presented and discussed 

Representative gas samples of cyclopentadiene ( V )  and furane (VI) were 
analyzed qual i ta t ively by mass spectrometri c analysis.  
mass balances were derived and tabulated, The data are recorded and dis-  
cussed in Appendix D .  

Semiquanti t a t i  ve gas 

The most s ignif icant  results ar is ing from the characterization o f  N- 

phenyl nadimide ( I )  pyrolysis residues are  g iven  below. 

Unsaturatioy i s  present in  a l l  products as indicated 
by 1630 cm- (C=C s t re tch)  band i n  the infrared spectra.  

Unsaturation content as one alkene group per >600g of 
polymer i s  present as indicated by bromine t i r r a t i o n .  

Unsaturation as a double bond containing o le f in ic  pro- 
tons  i s  n o t  discernible by nuclear magnetic resonance 
analysis b u t  may be present a t  a concentration below 
the sens i t i v i ty  of the spectrometer. 

Carbon linkages containing methylene and methinyl hydro- 
gen present i n  N-phenyl 2-methyl succi n i m i  de (IV) I) cy- 
clopentene (VII) and norbornane (IX) are  indicated by 
nuclear magnetic resonance analysis and are present i n  
a l l  samples t o  a higher number than phenyl hydrogens, 
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Cyclopentadiene ( V )  i s  retained i n  s o w  form i n  the 
polymeri c resi due as i ndi  cated by elemental analysi s and 
cycl opentadiene mass balance e 

Molecular weights by vapor phase osmometry i ndi cate  pro- 
ducts occur reproducibly as Mn's of approximately 700-750 
and 11 50-1 250. 

Thermogravimetric analysis shows chain thermal stabi 1 i ty 
t o  approximately 300°C. 

Gel permeation chromatography analysis shows polymeric 
products t o  have re la t ive ly  narrow molecular we igh t  d is-  
t r ibut ion w i t h  l i t t l e  lower o r  higher molecular weight 
contaminants ( ~ 1 0 % ) .  

No s tab le  polymer forms below 275"C, the temperature a t  
which the reverse Diels-Alder reaction i s  known t o  occur 
f o r  the model imide. 

These f i n d i n g s  were u t i l i zed  t o  postulate a pyrolytic polymerization mech- 
anism f o r  ( I )  as discussed i n  Section 2.4. 

Characterization data associated w i t h  a mechanistic interpretat ion f o r  
the pyrolyti c polymeri zation of N-phenyl oxynadimi de ( I  I ) are d i  scussed i n  
Section 2.4.2 on Page 20. 

2.4 MECHANISTIC INTERPRETATION OF TASK I PYROLYSES AND CHARACTERIZATION 
DATA 

2.4.1 N-phenyl Nadimide ( I )  

The pyrolyses and characterization data discussed i n  the previous 
sections a re  employed here t o  present the most sa t i s fac tory  explanation 
f o r  the s t ruc ture  of the polymeric products a r i s ing  from pyrolysis of N- 
phenyl nadimide ( I ) .  
different s t ructures  a r i s ing  from the pyrolysis of ( I )  a t  temperatures above 
tha t  necessary fo r  reverse Diels-Alder u n z i p p i n g  of the molecule. 
a l l  Task I pyrolyses and characterization data support one general type of 
polymer backbone configuration. To f a c i l i t a t e  the discussion of the 
polymerization mechanism the following code is used for the three species 
as shown below: 

One can speculate on the formulation of a number of 

However, 
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0 
II 

0 

N-phenyl Madimide ( I )  = N 

0 
II 
r 

II 

0 

N-phenyl Maleimide (111) = 

Cyclopentadiene ( V )  = C 

Upon inserting the sample tube (A-Figure 1 )  containing the model imide 
( I )  in to  the furnace (C-Figure 1 ) ,  a spontaneous reaction is observed t o  
occur a t  approximately 275"C, accompanied by the evolution of a gas (pres- 
sure b u i l d u p  as measured by the manometer (E-Figure 1)  i d e n t i f i e d  by mass 
spectrometric analysis t o  be cyclopentadiene and accumulation o f  l i q u i d  i n  
the cold t r a p  (G-Figure 1 ) e When the residue reaches a temperature of 300°C 
o r  greater  the pressure b u i l d u p  levels off and the product appears t o  slowly 
b u i l d  up viscosity as indicated by visual inspection. 

These observations indicate tha t  the f i r s t  s tep in the reaction se- 
quence resul t ing i n  polymerization i s  i n  f a c t  reverse Diels-Alder which 
gives themal ly  activated molecules of both N-phenyl maleimide (111) and 

diene (\I) and dur ing  th'is period ome (\I) v01 a t i  1 i za t i  on from 

the polymeri mat on tube as ex above. In the simplest ca 
as follows i n  Equation 1 a 
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0 
II 

2 2 + 

2 

A 2N 2M 4- 2c 

I t  i s  postulated tha t  the (111) l inear ly  consumes ( Y )  i n i t i a l l y  i n  a 
2 : l  r a t i o  according t o  Equation 2, This reaction gives an activated species 

0 
I I  

I I  

0 

-I- 

O= =O 

‘N ‘ N J  I 

M - c - M  4- c 
which is  presumed t o  i n i t i a t e  fur ther  polymerization via co- o r  terpolymer- 
i za t ion  in volving a1 1 three unsaturated species namelyo N-phenyl nadimide 
( I )  N-phenyl maleimide (111) and cyclopentadiene 
Equation 1 reacts with N, C, and M, the l a t t e r  two 
reverse Diels-Alder reaction t o  give the following 
s t ructures:  

-1 3- 
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o=c & +  C=O o=c c=o 

0 0  
‘F ’ ‘ y ’  

0=C /--cb-T C=O u=c c=o 
‘ > ’  

M-C-M + n ( N  + C + M) __+p M-C-M- (N-C-M), 

o r  d u r i n g  continual reverse Diels-Alder reaction the following can occur: 

0 
11 

0 
I1  

3 

3N ’ 2 N + M + C . r  
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and then 0 
II 

C 

+ 
C 
II 

0 

0 
II ,. 

II 

0 

M-C-M + 2N i- C + M M-C-M-N-C-N-M 

This combination o f  M-C-M-N-C-N-M gives Fn equal t o  1129 and a r a t i o  o f  pro- 
tons equal t o  25 phenyl t o  36 non-phenyl or 1/1.44 
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If  more cyclopentadiene (C) i s  l o s t  during the reverse Diels-Alder/ 
polymerization reaction the following structures can be formed: 

M-C-M-N-M-N 
(Rn = 1063) 

Non-phenyl /phenyl 
proton r a t i o  = 1.16 

o r  

M- C-M- N-M- N -M (mn = 1236) 
Non-phenyl /phenyl 
proton r a t i o  = 1.07 

-16- 



NASA CR-72633 
11 926-601 3-RO-00 

These three cases average 1150 En and non-phenyl/phenyl proton average equal 
t o  1.23. 
w i t h  only one molecule o f  N-phenyl nadimide ( M )  o r  N and N-phenyl maleimide 
(M) t o  give lower Hn species as follows: 

Also plausible i n  th is  same scheme i s  the combination o f  M-C-M 

IVI-C-M-M 
(Vn = 651) 

Non-phenyl/phenyl 
twoton r a t i o  = 1.27 

Or 

(Kn = 824) 
Non-phenyl/phenyl 
proton r a t i o  = 1.20 
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f o r  an average of Rn equal to  738 and a non-phenyllphenyl protons = 1.24. 

l a r  weight polymer species meet a l l  o r  most of the observed polymerization 
and characterization experimental r e su l t sg  summarized on Pages 1 C  and 11 e 

The two averaged cases f o r  the higher molecular weight and lower molecu- 

These postulated s t ructures  meet the analyti  cal data cr i  t e r i  a as fol  - 
1 ows : 

The cyclopentene r i n g  as M-C-M f u l f i l l s  the observed C=C 
s t re tch  band a t  1630 cm-1 i n  the infrared. 

The cycl opentene double bond ful  f i 11 s observed bromine 
pickup indicating one double bond per approximately Kn 
~ 6 0 0  o r  greater.  

The inclusion of a l l  three possible species as M, C ,  and N 
expl ai n the presence of N-phenyl mal eimi de cycl opentene ., 
and norbornane methylene and methinyl protons i n  the n.m.r. 
spectra.  

The low (<7%) presence of o le f in ic  hydrogens i n  re la t ion 
t o  other protons explains why these hydrogens i n  the cyclo- 
pentene r i n g  do not give discernible peaks in the n.m.r. 

Cycl opentadi ene re ta i  ned i n  the polymer s t ructure  is  ex- 
plained by presence of C or N. 

The Mn's of the two postulated molecular weight species 
f a l l  w i t h i n  the .range indicated by VPO experiments 

The thermal weight loss  above 300°C is  concurrent w i t h  
thermal degradation of cyclopentene and W i n  the back- 
bone * 

The onset of polymerization a t  275"C, the temperature a t  
which reverse Diels-Alder occurs i s  consistent w i t h  the 
proposed mechanism as supported by cyclopentadiene mass 
balance data and observed experimental resu l t s  and product 
characterization data a 

The pyrolytic polymer s t ructures  as postulated are i n  agreement with 
the work performed by Potter and Zutty (Reference 2) who describe a copoly- 
mer which almost ident ical ly  simulates the backbone postulated in t h i s  re- 
port .  
nene) were reacted t o  form an  a l ternat ing copolymer by reaction i n  a sealed 
tube a t  90°C f o r  f ive  and one-half hours. 

Specif ical ly ,  maleic anhydride and bicyclo ( 2 . 2 . 1 )  hept-2-ene(norbor- 

This reaction is shown as follows: 
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0 
It 

n 

II 

0 

+ n  
n 

e J n  

These authors a lso claim t h a t  a t h i r d  unsaturated monomer can be reacted 
t o  form a terpolymer from the above species. 

These r e su l t s ,  from monomers very s imilar  t o  N-phenyl nadimide ( I )  and 
N-phenyl maleimide (111) (as norbornene and maleic anhydride, respectively) 
give strong argument f o r  the postulated pyrolytic polymer backbone from ( I )  
described here. The statement t h a t  a t h i r d  unsaturated monomer can be em- 
ployed strengthens the case f o r  some cyclopentadiene ( V )  i n  the polymer back- 
bone as a cyclopentene (VII) s t ruc ture .  

Another patent by Zutty (Reference 3 )  describes a s imilar  addition 
polymer from nadi c anhydride and ethylene e 

I t  i s  f e l t  t ha t  a l l  model compound pyrolyses d a t a  obtained i n  Task I 
studies are  best described by the polymer backbone linkages appearing on 
Pages 16 and 17 of t h i s  report for the N-phenyl nadimide ( I )  species. Di- 
rec t  comparison of the pyrolytic polymers ar is ing from ( I )  w i t h  A-type poly- 
imide polymers prepared in  Task I1 polymer synthesis studies i s  very d i f f i -  
cu l t  due t o  the intractable  nature o f  the l a t t e r .  However, an infrared 
s t ructural  analysis comparison of these products (Appendix E, Page 131ff) 
gives evidence t h a t  the s t ructures  a re  similar.  Therefore, TRN Systems 
f ee l s  t h a t  the pyrolytic polymerization mechanism derived fo r  the model 
compound, N-phenyl nadimide ( I ) ,  i s  a workable model fo r  the reaction 
scheme tha t  gives the thermosetting A-type polyimide cured product. 

-1 9- 
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2,4.2 N-phenyl Oxynadimide (11) 

The polymeri c speci es a r i  sing from the pyrolyses experiments employ- 
ing N-phenyl oxynadimide (11) as the model compound a l l  gave pa r t i a l ly  i n -  
t r ac t ab le  polymeric products very s imi la r  t o  the product obtained from the 
pyrolyt ic  polymerization o f  N-phenyl maleimide (111) The evolution of an 
almost quant i ta t ive amount o f  furane (VI) d u r i n g  these s tudies  w i t h  (11), 
coupled with the s t ruc tura l  characterization data t h a t  gives no indication 
o f  (VI) in  the pyrolytic polymer backbone, suggests t ha t  the pyrolysis 
product i s  indeed a poly-(N-phenyl rnaleimide) which a r i s e s  according t o  
Equation 6. 

0 0 
I I  II 

C 

f 

C 
II II 

0 0 

(6) 
then 

o=c c-0 

\ N ’  I 
n 

A 

O= =O 

n-2 
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Data t o  substant ia te  this postulation (n.m.r .  and IR) are discussed i n  de- 
t a i l  i n  Appendix C and D. An in-depth study of the polymerization of Fa- 
phenyl maleimide (111) was not intended t o  be carried o u t  i n  this project ,  
Complete characterization of the pyrolysis products from (111) f o r  compar- 
ison w i t h  products from N-phenyl oxynadimide (11) was beyond the scope o f  
Task I studies. I t  i s  believed the rapid evolution of Purane (VI)s  which 
occurs d u r i n g  reverse Diels-Alder reaction of 11, would also occur in pre- 
polymers capped w i t h  oxynadimide groups thereby result ing in a composite 
s t ructure  of h i g h  void content. Previous studies have shown t h a t  compo- 
si tes having a high void content possess low i n i t i a l  mechanical properties 
and poor s t a b i l i t y  a f t e r  long duration t o  isothermal exposure in a i r  a t  
elevated temperatures. Consequently, nadic anhydride was selected as the 
A-type prepolymer end cap fo r  a l l  Tasks I1 - I V  ef for t s .  

-21 - 
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3 e POLYMER SYNTHESIS AND CHARACTERIZATION STUDIES 

The experimental data a r i s ing  from Task I model compound studies were 
interpreted tha t  a nadic endocyclic species would give a more processable 
and s table  polymer product when employed as a prepolymer end cap t h a n  an 
oxynadic configuration (as discussed in Section 2 )  a The nadi c end cap  i s  
shown i n  the general A-type polyimide s t ructure  below:: 

0 0 

C 

C 
II i l  

0 0 

II II 

N B  
\ 

c, 
C" 

The general A-type polyimi de prepolymer s t ructure  given above was the 
d i rec t  r e s u l t  of experimental studies conducted by TRW Systems i n  Contracts 
NAS3-4188 and NAS3-7949 In these pri o r  s tudi es 
and aromatic diamines ( R 2 )  i n  combination w i t h  nadic anhydride were shown 
t o  give A-type polyimi de polymers demonstrating excel l en t  thermo-mechani cal 
properties.  The objective of the current polymer work described below was 
to  conduct an in-depth i nvesti gation of s i x  aromatic monomer candidates 
possessing excel l en t  individual a t t r ibu tes  f o r  inclusion i n  A-type poly- 
imide polymers. 
the polymer screening studies based upon the best combination of polymer 
thermo-oxi dati ve stabi 1 i ty  hydrolyti c s tabi  1 i ty  and processabi 1 i ty 
studies demonstrated t h a t  a nadic species was the best prepolymer reactive 
end cap group o f  the two investigated,  
studies were concentrated on 1definl"ng the best csmbinatlsn of djanhy- 
dride and diamine components f o r  combination with a nadic endocyclic end 
capping group. 

aromati c d i  anhydri des ( R1 ) 

One spec i f ic  combination of monomers was t o  be chosen from 

Task I 

Consequently, the polymer screening 
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Accordingly, nadic anhydride (NA) was chosen f o r  Task I1 polymer s tud -  
ies. This endocyclic compound was combined w i t h  combinations of two aro- 
matic dianhydrides ( R 1 )  and three aromatic diamines (R2) t o  give candidate 
backbone configurations for the polymer and prepolymer screening studies 
des c r i  bed be 1 ow 

3.1 POLYMER SCREENING STUDIES 

3.1.1 Varnish Synthesis Studies 

Nadic anhydride ( N A )  was used as a prepolymer end capping monomer and 
combined separately in each instance w i t h  one d i f fe ren t  aromatic dianhy- 
d r i  de and one aromati c diamine where the aromatic d i  anhydri des employed 
were: 

0 
II 0 II 0 II 
0 

,1 c \  
0 0 0 0 

c \  

/ 

/ c  

'C 

II 0 

C / 
II i i  ' c  II II 

- C -  
C 
0 0 0 0 

and 

Benzophenone Tetracarboxylic Pyromel 1 i t i c  D i  anhydri de 
Aci d D i  anhydri de (BTDA) (PMDA) 

These monomers were chosen because of commerci a1 avai 1 abi 1 i ty  favorable 
economi cs and previously demonstrated feasi  b i  1 i t y  (Reference 1 ) for 
producing thermally s tab le  A-type polyimide products. The carbonyl l i n k -  
age i n  BTDA allows an additional parameter, namely, f l e x i b i l i t y ,  t o  be in- 
vestigated, The e f f ec t  of t h i s  linkage on polymer properties could be 
di  rec t ly  compared w i t h  those obtained for the " s t i f f e r "  PMDA 
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And the aromatic diamines u t i l i zed  were: 

HEN- -CH2- HEM- -0- 

Methylene Di ani 1 i ne (MDA) Oxydi ani 1 i ne (ODA) 
and 

H2N- -S- -NH* 

Sul fodi ani 1 i ne (SDA) 

These three d i  ami nes were sel  ected because of commerci a1 avai 1 abi 1 i t y  
favorable economics and themo-oxidatively s t ab le  aromatic s t ruc ture ,  
In addition, each diamine contains a f l ex ib l e  linkage between the aroma- 
t i c  rings so t h a t  a d i r ec t  comparison of the linkage e f f ec t  on polymer 
thermo-oxidative s t a b i l i t y ,  hydrolytic s t a b i l i t y  and processabili ty could 
be made, 
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I n  addition t o  selection of appropriate monomers, the A-type poly- 

Previous studies i n  Contract 
imide prepolymer formulated molecular weight (FMW) f o r  polymer screening 
was considered a very important variable.  
NAS3-7949 had ident i f ied sui table  polymer processing and properties 
curred a t  a FMW - >1000. 
preliminary polymer screening s tudies .  I t  was f e l t  t ha t  1300 gave an in- 
termediate value t h a t  could be optimized i n  subsequent prepolymer studies 
once the proper ingredients had been selected.  

oc- 
I t  was decided t o  employ a FMW equal to  1300 fo r  

The possible d i f fe ren t  combinations i n  one reaction arising from N A ,  
one aromati c di anhydri de and one aromati c di ami ne gave six i n d i v i  dual 
A-type polyimide candidates f o r  synthesis and characterization studies 
Specifically,  the ingredients given above were allowed t o  react  i n  d i -  
methyl formamide in quanti t i e s  necessary t o  yield amic-acid (A-A) resins 
as a 40% w/w sol ids  loaded varnish a t  a 1300 prepolymer formulated molecu- 
l a r  weight (FMW). 
Page 123f.f. 

The experimental de ta i l s  are given i n  Appendix E ,  

3.1.2 Preparation of Molding Powders 

The A-type A-A prepolymer solutions i n  DMF prepared as described a- 
bove were converted to  imidized molding powders by vacuum evaporation and 
drying according to  the procedure given i n  Appendix E 
resul ti ng s i x  A-type polyimi de prepolymer mol di  ng powders were cured i nto 
neat resin plugs under pressure as described below. 

Page 123ff The 

3.1,3 Preparation of Cured Polyimide Resin Plugs 

All prepolymer molding powders prepared as described above were sub-  
jected t o  a processing variable study to  convert the prepolymer 
t o  f inal  cured polymer plugs. The objective of t h i s  study was t o  assess 
processing variables tha t  furnished neat material g i v i n g  the highest Barcol 
hardness readi ngs a t  the 1 owest processing condi t i  ons possible 
iables chosen f o r  this study were pressures of 325, 500 and 1000 psi a t  
temperatures of 540°F and 59OoF, employing a fixed dwell time of three 

The var- 
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minutes and a fixed cure time of 30 minutes, In these screening tes t sg  
the lowest pressure examined was 325 psi however, lower pressures i n  the 
autoclave molding range ( e . g O g  200 psi) were investigated i n  the  Task I11 
1 ami nate processing studies described on Page 43ff. 

The resu l t s  o f  the molding experiments are summarized i n  Table 111. 

TABLE I11 
RESIN BARCOL HARDNESS AS A FUNCTION OF PRESSURE AND TEMPERATURE 

Pressure Tempera t u  re 
Formul a t i  on (Psi 1 ( O F )  Barcol Hardness 

500 540 531 53 
1000 540 47/48 

NA/MDA/BTDA 325 590 49/49 
500 590 46/46 

1000 590 48/49 
I 

325 540 
500 540 

NA/ODA/BTDA 1000 540 
325 590 
500 590 

48/47 
481 48 
52/52 
47/44 
50/50 

5QO 540 
NA/MDA/PMDA 1000 540 

500 590 
1000 5 90 

30130 
35/20 
40142 
3511 5 

These i n i t i a l  data gave i n s i g h t  into processing variables required which 
were confirmed i n  l a t e r  composite fabr icat ion studies. The f i r s t  two 
formulations show t h a t  540°F (13" above the 527°F minimum defined f o r  nadic 
cure i n  Task I )  press temperature i s  suf f ic ien t  t o  prepare neat resin plugs 
of good Barcol hardness from BTDA containing materi a1 s under re1 a t i  vely 
mild processing pressuresg e.g. ,  325 psi, 

The resu l t s  given i n  Table I11 a l so  show t h a t  1300 FMW prepolymer con- 
taining PMDA does not form as well compacted products as BTDA-containing 
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prepolymers (as  indicated by Barcol hardness) even when processed a t  1000 
psi a t  590°F. 
experimentation a t  other prepolymer FMhl's as described i n  Section 3.2. 

The processing condition limits were investigated in further 

The NAIODAJPMDA prepolymer powder was mol ded under identical  condi - 
tions given in Table I11 f o r  fabrication of the NA/MDA/PMDA material. The 
ODA prepolymer could be molded into specimens giving an outward appearance 
of consolidation. Howevers a l l  samples crumbled on attempts t o  determine 
Barcol hardness. Since i n i t i a l  processability was n o t  t o  be the s ingle  
most important c r i te r ion  f o r  re ject ing a candidate formulation, provided 
a neat, cured plug specimen could be molded, the NA/ODA/PMDA polymer was 
characterized along with the resins l i s t e d  i n  Table 111. 

However, the NA/SDA/BTDA and NA/SDA/PMDA formulations gave almost 
100% flow (out of the mold) a t  a l l  processing conditions screened (540°F 
and 325 psi up t o  590°F and 1000 Ps i ) .  In no instance was a consolidated 
specimen attained tha t  approached apparent cure of the NA/ODA/PMDA formu- 
1 a t i  on described above e 

t a i  ned i n these molding experiments the SDA containing formulations were 
eliminated from the polymer characterization studies described below. 

Because of the consistent negative resu l t s  ob- 

3 1 .4 Characteri zati  on of Mol ded (Cured) A-Type Pol yimi des 

The four formul a t i  ons tha t  yielded reasonably consol i dated products 
in polymer mol d i n g  studies were characterized f o r  structure by i nstru- 
mental methods for hydrolyti c s tabi  1 i ty by water boi 1 res4 stance and 
thermo-oxidative s t a b i l i t y  by TGA screening and isothermal aging in a i r  a t  
4OOOF and 600°F. The resu l t s  of these studies are  discussed below. Ex- 
perimental de ta i l s  are  described in Appendix E .  

3.1.4.1 Structure Analysis - Infrared spectra were obtained for the 
NA/MDA/BTDA, NA/ODA/BTDA, NA/MDA/PMDA~ and NA/ODA/PMDA formulations w h i  ch 
moleded into consolidated specimens. Analysis of the spectra showed tha t  
the cured A-type polyimide resins a l l  contained the desired imide backbone 
configuration and differed only in f ine  s t ructure .  
comparisons of cured polymer with model compounds are  discussed in 
Appendix E ,  Page 127ff. 

These data and gross 
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After i t  had been e s t a b l i s h e d  t h a t  the f o u r  modi f ica t ions  had the 
d e s i r e d  A-type polyimide structureg they were further cha rac t e r i zed  f o r  
thermo-oxidative s t a b i l i t y  a s  descr ibed  below. 

3.1.4.2 Determination of Thermo-oxidative S t a b i l i t y  - The f o u r  resin can- 
d i  da t e s  were screened f o r  thermo-oxi d a t i  ve s t a b i  1 i t y  empl oyi ng TGA analy- 
s i s .  I n  each c a s e g  the thermal s t a b i l i t y  (TGA i n  N2) approached 400°C 
before weight l o s s  began, whereas f o r  ox ida t ive  s t a b i l i t y  (TGA i n  a i r )  
weight l o s s  s e t  i n  about 325°C and amounted t o  %lo% weight loss a t  400°C. 
Because a l l  A-type polyimides screened f o r  thermo-oxidative s t a b i l i t y  by 
TGA a n a l y s i s  appeared t o  be o f  equal thermal and ox ida t ive  r e s i s t a n c e ,  i t  
was necessary  t o  choose the most s t a b l e  formula t ion  from isothermal aging 
results d iscussed  below. 
i n  Appendix E .  

The TGA d a t a  obta ined  f o r  the resins a r e  given 

One thousand-hour aging s t u d i e s  employing n e a t  resin p l u g s  of NA/- 
MDA/BTDA NA/ODA/BTDA NA/MDA/PMDA and NA/ODA/PMDA i n a i  r ( 100 m l / m i  n 
f low) a t  400°F and 600°F were determined. In each case  the specimens 
aged a t  400°F showed 4% weight loss a f t e r  1000 hours. The results of 
the 600°F aging study f o r  the above formula t ions  a r e  d isp layed  g r a p h i c a l l y  
i n  Figure 2. 
the apparent  i n s t a b i l i t y .  All o f  the formula t ions  aged f o r  1000 hours 
demonstrated excel lent  thermo-oxi d a t i  ve s t a b i  1 i t y  a t  600°F w i  t h  the 1 e a s t  
s t a b l e  specimen (NA/ODA/BTDA) d i sp lay ing  a weight loss of >30%. The 
NA/MDA/PMDA formula t ion  d isp layed  excellent weight r e t e n t i o n  (85%) a t  the 
end o f  the aging per iod .  

a f t e r  the 1000 hour aging per iod  i n  a i r  a t  600°F is  sho n i n  Figure 3. 
The photo is  r e p r e s e n t a t i v e  of the physical conf igu ra t ion  of A-type poly- 
imides a f t e r  exposure t o  an ox id iz ing  environment a t  600°F. The o t h e r  
formula t ions  aged demonstrated cons iderable  warping i n  add i t ion  t o  the sur 
f a c e  c racks  shown f o r  the NA/MDA/P 

The NA/ODA/PMDA formula t ion  was aged only 650 hours due t o  

A g raph ic  r e p r e s e n t a t i o n  of the NA/MDA/P DA nea t  resin molded plug 

As discussed  i n  Sec t ion  5,  i t  i s  be l ieved  t h a t  the s u r f a c e  c racking  
phenomenon a r i s e s  from both stress relief of the molded plug a s  well as  
continuous su r face  o x i d a t i o n o  
Thornel 50s high modulus g r a p h i t e  composites prepared from this resing TRW 

Because s i m i l a r  behavior Was observed i n  the 
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Figure 3 .  NA/MDA/PMDA Specimen After Aging f o r  1000 Hours 
a t  600°F 

Systems believes neat resin p l u g  aging a t  600°F i n  a i r  can be employed i n  
future work f o r  approximating resin behavior i n  graphite composites. 

3.1.4.3 Hydrolytic Stabi 1 i ty  - The hydrolytic s tabi  1 i t y  of a1 1 prepoly- 
mers and cured resins prepared i n  Task I1 polymer screening studies was 
determined. T h i s  screeni ng of hydrolyti c s tabi 1 i ty  consisted of a two- 
hour water boil on powdered samples followed by weight  loss measurements 
The resu l t s  of the experiments are summarized i n  Table IV and are detailed 
i n  Appendix E on Pages 134-5. 

The data obtained def ini te ly  showed t h a t  formulations containing PMDA 
as the dianhydride portion of the resin a re  less  susceptible t o  hydrolytic 
degradation than those containing BTDA, bo th  in prepolymers and cured resin.  
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TABLE IV 
HYDROLYTIC STABILITY OF PREPOLYMERS AND CURED RESINS 

Prepolymer and Cured Polymer Hydrolytic S tab i l i t y  as 
Specimens Weight Loss ( X )  

NA/MDA/BTDA Prepol s i 9.2 
NA/MDA/BTDA Cured Polymer i 7 - 3  
NA/ODA/BTDA Prepol i I 7.7 
NA/O DA/ BTDA Cured Po 1 yme r 5.0 
NA/MDA/ PMDA Pre pol 1.3 
NA/MDA/PMDA Cured Polymer 2.3 

2.3 NA/ODA/PMDA P re pol 
NA/ODA/PMDA Cured Polymer 0.0 

i 

3.1.5 Selection of a Specific A-Type Formulation fo r  Use i n  Remainder 
Of Program 

The processing and characterization data described previously i n  this 
Section were u t i l i zed  t o  se l ec t  a spec i f ic  A-type polyimide formulation f o r  
use i n  a l l  subsequent program a c t i v i t i e s .  The key select ion c r i t e r i a  em- 
ployed consisted of the following: 

Thermo-oxidative s t a b i l i t y ,  

Hydrolytic s tabi  1 i ty  and 

Processabi 1 i t y  . 
Each of the four candidate formulations were ranked from one t o  fours  one 
being defined as best  and four as the worst on the basis o f  re la t ive  posi- 
t ion i n  the c r i t e r i a  given above. The results of the ranking are  presented 
below i n  Table V i n  which equal consideration was given t o  each of the 
four categories. 
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TABLE \d 

RANKING CRITERIA FOR SELECTION OF BEST CANDIDATE FORMULATION 

1 Thermo- Hydro1 v t i  c Processing al Sum of 
. Oxi dative Stabi 1 i ty Ease 1 Digits Formulation 1 S t a b i l i t y  Prepolymer I Cured .- , f I 1 

NA/MDA/PMDA 
NA/MDA/BTDA 
NA/ODA/PMDA 1 
NA/ODA/BTDA I 

1 2 !  

1 3  

i t j  
r 7 i 3 

1 11 
4 
2 

aBased on ease of consolidation of molded p l u g  as indicated by Barcol 
hardness a t  comparable processing temperatures and pressures. 

Hydrolytic s tabi  1 i t y  of both prepolymer and polymer was considered 
cause i ns tabi l i ty i n  prepolymer form strongly i ndi  cates poor storage and 
handleability charac te r i s t ics  o f  the resin i n  prepreg form prior t o  use i n  
composite fabrication 

be- 

The NA/MDA/PMDA candidate gave a sum of d ig i t s  in re la t ive  ranking 
equal to  seven ( the lowest sum being indicative of  the best candidate) 
which gave t h i s  material a c lear ly  superior ranking t o  the other three 
candi date formul a t i  ons Neither NA/MDA/BTDA, NA/ODA/PMDA or NA/ODA/BTDA 
could be assigned a second best s ta tus  since a l l  gave a sum of re la t ive  
ranking d ig i t s  equal to  eleven. Because a l l  other candidate resins ranked 
consi derably (and equal ly ) 1 ower the NA/MDA/PMDA formulation was chosen 
f o r  a l l  subsequent program a c t i v i t i e s .  The prepolymer study conducted on 
this spec i f ic  combination of monomers i s  described i n  Section 3.2 as fo l -  
1 ows D 

3.2 PREPOLYMER SCREENING STUDIES 

The excellent properties of the NA/MDA/PMDA A-type polyimide formula- 
t i o n  were suf f ic ien t  t o  allow choice of this material fo r  a l l  subsequent 
studies as discussed above i n  Section 3.1. The next technical e f f o r t  was 
di rected toward investigations to  optimize the prepolymer formulated 
molecular weight (FMW) f o r  resin and prepregging properties pr ior  t o  
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undertaking laminate studies in Tasks I11 and IV. 
studies described in Section 3.1 u t i l i zed  1300 as an a rb i t ra ry  FMW i n  or- 
der t o  f i x  this variable t o  permit selection of the proper monomer ingredi- 
ents. Because 1300 FMW represented only a non-optimized arbi t rary prepoly- 
mer molecular weight, the investigation of several other FMwl's was neces- 
sary t o  define a near optimum product for preparation and evaluation of 
composites. The NA/MDA/PMDA formulations were investigated a t  FMW's of 
1000, 1500, and 2000. 
1300, since i t  was f e l t  t ha t  the degree of resin thermo-oxidative s t a b i l i t y  
and hydrolytic s t a b i l i t y  should increase w i t h  increasing FMW. Conversely, 
the 1000 prepolymer FMW was chosen f o r  investigation because the key vari- 
able of processabili ty should improve a t  a lower FMW. The ultimate se- 
lection c r i t e r i a  for  the best candidate FMW was again t o  be a trade-off 
in thermo-oxidative s t a b i l i t y ,  hydrolytic s t a b i l i t y ,  and processability 
which allowed selection of the NA/MDA/PMDA formulation. 

The polymer screening 

Two FMW's (c.a. , 1500 and 2000) were chosen above 

The experimental investigations conducted on 1000, 1500, and 2000 
FMW NA/MDA/PMDA resins are  described below. The resul ts  are  related t o  
the original 1300 FMW material ,  when applicable, so tha t  the selection of 
an optimum material could be made from four candidates. 

3.2.1 Prepolymer Varnish Synthesis Studies 

Three NA/MDA/PMDA amic-acid varnish solutions formulated fo r  1000, 
1500, and 2000 molecular weights were prepared a t  40% w/w solids loading 
in DMF according t o  the synthesis scheme detailed i n  Appendix E, Page 123. 
The solution viscosi t ies  of the three varnishes were determined a t  2 5 O C  

employing a Brookfield viscometer.. The resu l t s  are  summarized i n  Table VI. 
All of the samples were in a viscosity range acceptable fo r  prepreg oper- 
a t ions,  because they compared favorable with tha t  of TRW commercial A-type 
polyimide P13N (viscosity d ! O O  cps a t  25°C). 
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TABLE VI 
NA/MDA/PMDA VARNISH SOLUTION VISCOSITIES 

3.2 I 2 Prepolymer Drying and Imi d i  mati on Studies 

The three A-A prepolymers in DMF prepared above were used t o  prepreg 
Style 181 E-glass cloth coated with A-1100 amino-silane s o f t  f in i sh  by the 
method described i n  Appendix F The prepregged cloth was sub- 
jected t o  a DMF drying cycle a t  325°F i n  a forced a i r  oveng followed by a 

subsequent prepolymer imidization cycle a t  475OF in a forced a i r  oven. 
A time-temperature matrix study was undertaken for the 1500 formulated 
molecular weight prepreg species d u r i n g  which the progress of drying 
and/or imidization was monitored by infrared analysis o f  resin isolated 
from the prepreg. 
The degree of imidization was followed by the disappearance of the resin 
amic-acid (A-A)  amide band. I t  was observed tha t  a temperature o f  325°F 
f o r  up t o  four minutes i s  n o t  suffl’cient t o  afford complete imidization 
of the A-A res in ,  However, a temperature of 325°F fo r  two minutes fo l -  
lowed by drying a t  475°F f o r  two minutes or more i s  su f f i c i en t  t o  imi- 
dize the A-A material completely as evidenced by the disappearance o f  
the amide band. 
Section 4. 

Page 137. 

The resu l t s  of thl’s study are  summarized i n  Appendix F ,  

For fur ther  detailed information see Appendix F and 

3.2.3 

epolymer varnishes prepared as 
described abcve were converted t o  fu l ly  imidlzed resin samples by the 
method outlined i n  Appendix E ,  Page 123ff. The s t ruc ture  of the prepolymer 
molding powders was confirmed t o  be identical  t o  the material obtained in  
the imidization studies by comparing the respective infrared spectra.  
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3.2-4 Prepolymer Molding Studies 

The three NA/MDA/PMDA prepolymer molding powders, prepared as  des- 
cribed above, were subjected t o  a processing study t o  convert the material 
t o  f inal  cured polymer plugs e The data generated in  prior polymer screen- 
ing studies and discussed on Page 28 t h a t  demonstrated 590°F t o  be the 
minimum temperature for  reasonable consolidation of the 130c) FMW NA/MDA/- 
PMDA system were fu l ly  u t i l i zed  in t h i s  study. 
1000 molecular weight species could be fabricated i n t o  consolidated, neat 
resin plug specimens 

In t h i s  study, only the 

The 1000 FMW prepolymer powder readily processed in to  neat plugs em- 
ploying a 30-second dwell time, followed by a 30-minute cure cycle a t  
590°F under 325 psi applied pressure. The Barcol hardness o f  the cured 
species averaged 49. These data r e f l ec t  a s ign i f icant  improvement of 
Barcol hardness and processing conditions over those displayed by the 1300 
FMW NA/MDA/PMDA species reported on Page 27. The 1300 FMW prepolymer mat- 
e r i a l  under identical  dwell and cure times a t  590°F required applied pres- 
sure of 1000 psi t o  produce a consolidated, cured plug demonstrating a 
Barcol hardness reading i n  the ranqe of 40-42. 

The 1500 and 2000 FMW prepolymers could n o t  be fabricated into con- 
solidated,  neat plugs over a wide range of processing conditions. The 
fabrication study employed cure temperatures of 590-600°F and applied pres- 
sures of 325-3250 psi and dwell and cure times of 0-3 minutes and 5-30 min-  
utes,  respectively.  I n  each experiment the neat res in  product 
e i the r  was obtained from the press as a non-consolidated mass or gave a 
very b r i t t l e  specimen t h a t  crumbled on attempts t o  determine a Barcol 
hardness reading. 

3.2.5 Characterization of Molded Plugs 

The neat resin cured samples prepared above were characterized as 
di scussed bel ow 

3.2.5.1 
formulated molecular weight (FMW) NA/MDA/PMDA cured samples was confirmed 
by infrared analysis.  

Infrared Analysis - The s imi la r i ty  in  s t ructure  of the three 

Figures F-8, F-9, and F-10 i n  Appendix F show the 
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spectra obtained f o r  the 1000, 1500, and 2000 FPlW cured species,  respect- 
ively.  The only variation i n  the spectra which appears t o  be s igni f icant  
i s  the intensi ty  o f  the bsorption band i n  the 2750-3000 cm-l region. This 
absorption i s  primarily due t o  -CH2- stretching i n  cyclopentene o r  nadic 
species (see Page 99). As expected, absorption intensi ty  i n  this region 
decreases as  the FMW increases, because l e s s  nadic anhydride ( N A )  monomer 
i s  introduced in to  the material 

3.2.5.2 Thermo-Oxidative S tab i l i t y  - The thermo-oxidative s t a b i l i t y  of 
the cured polymers was screened by thermogravimetri c analysis (TGA) i n  
a i r .  
2000 cured FMW species increase i n  s t a b i l i t y  w i t h  increase FMW (Page 150). 
The 1000 FMW resin appeared t o  be consistently %50"C l e s s  s tab le  than the 
three h i  gher molecular wei gh t materi a1 s w h i  ch a1 1 demonstrated h i  gher re-  
s is tance t o  a i r  oxidation by TGA characterization. The concern f o r  this  
i ndi  cat i  on of 1 essened thermo-oxi dat i  ve s tabi 1 i t y  of the 1000 FMW cured 
polymer as opposed t o  cured NA/MDA/PMDA materials derived from higher FMW 
prepolymers (c.a.  
600°F. These isothermal aging data a re  discussed below. 

The resu l t s  of the screening showed t h a t  the 1000, 1300, 1500, and 

1300-2000) was al leviated by isothermal aging i n  a i r  a t  

The thermo-oxi dative s t ab i l  i t y  of the readily processed 1000 FMW 
material was investigated by subjecting a sample t o  the identical  iso- 
thermal aging conditions employed f o r  the 1300 FMW species, (see 
Appendix E f o r  d e t a i l s ) .  
the 1000 and 1300 FMW materials is given i n  Table VII. 

A comparison o f  the resin weight  loss  data for 

TABLE VI1 
COMPARISON OF RESIN WEIGHT LOSS DATA FOR 1000 AND 1300 

FORMULATED MOLECULAR WEIGHT NA/MDA/PMDA CURED POLYMER PLUGS AT 600°F 
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As can be seen from these data,  the cured resin prepared from 1000 
FMld prepolymer demonstrated thermo-oxidative s t a b i l i t y  i n  a i r  a t  600°F af-  
t e r  300 hours a t  a level almost double tha t  of the cured 1300 molecular 
weight material .  Cured specimens prepared from 1500 and 2000 FMW prepoly- 
mers demonstrated greater  resin weight losses than the 1000 and 1300 mat- 
e r i a l s  under identical  aging conditions. These findings showed a trend i n  
a direction opposite t o  t h a t  one would pred 
appears t h a t  this trend is d i rec t ly  re la ted 
tha t  i s achieved under i denti cal processing 
further optimization of the FMW prepolymer 
may offer  a s t i l l  fur ther  improved product, 
study was beyond the scope of this project .  

c t  from the TGA re su l t s ,  I t  
t o  the degree of consolidation 
conditions. I t  i s  f e l t  t h a t  
n the range of 1000 t o  1300 
howeverg this  second order 

3.2.5.3 Hydrolytic S tab i l i t y  - The hydrolytic s t a b i l i t y  of the cured resins 
prepared from 1000, 1500 and 2000 FMW prepolymers was assessed by measure- 
ment o f  weight loss  a f t e r  a two-hour immersion i n  boil ing water. 
sistance to  aqueous hydrolysis was excellent f o r  each of the NA/MDA/PMDA 
cured samples. The data obtained are summarized i n  Appendix F along w i t h  
the weight loss numbers previously determined f o r  the 1300 FMW materials. 
The maximum weight  loss observed was only 4%. 

The re- 

3.2.6 Selection of a Specific NA/MDA/PMDA Prepolymer Formulated Molecular 
Weight f o r  Composi t e  Fabri cat i  on Studies 

The processing and characterization data completed on NA/MDA/PMDA 
resins prepared a t  1000, 1300, 1500, and 2000 prepolymer formulated molecu- 
l a r  weights (FMW's) were interpreted t o  se l ec t  a spec i f ic  FMW f o r  u t i l i za t ion  
i n  Task I11 and IV composite fabrication and evaluation studies. 

The three key c r i t e r i a  employed f o r  this  selection process were again 

Thermo-oxi dati  ve s tabi  1 i t y  

Hydrolytic s t a b i l i t y ,  and 

Processabi 1 i t y  e 

Each of the four candidate prepolymer FMW's were ranked from one t o  four 
u s i n g  the method described on Page 31. f o r  select ion of the MA/MDA/PMDA 
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monomer combination. 
Table VIII. 

The resu l t s  of the ranking process are given i n  
In this par t icular  ranking procedure, one spec i f ic  FMW was 

TABLE VI11 
RANKING CRITERIA FOR SELECTION OF BEST NA/MDA/PMDA 

FORMULATED MOLECULAR WE1 GHT (FMW) 

7- 

Processinga ! sum of 
Ease ; Digits 

Thermo- Hydrolytic 
FMW I Oxi dati  ve S tab i l i t y  

: Stab i l i t y  Prepolymer I Cured . 4 

i ( 4 i 4  1 10 

1 i 3  1 2 1 8  

11 

1 1000 '1 
1300 I 2 i 3 1 11 

! 2000 1 4 4 I 

3 1500 1 

aBased on ease of consolidation of molded plugs indicated by Barcol hard- 
ness a t  comparable processing temperatures and pressures 

not c lear ly  bet ter  than the other a l te rna te  candidates. As can be seen 
from the sum o f  the d i g i t s  in Table VI11 
varying degrees of trade-off i n  the se lec t i  on c r i  t e r i  a 

the four candidates a1 1 involved 

A t  th is  point i n  the program i t  became necessary t o  decide which se- 
lection c r i t e r i a  were the most important. 
of t h i s  program were t o  be composi tes  demonstrating high thermo-mechani cal 
properti es 
s t a b i l i t y  i n  conjunction with processing ease should be given more con- 
sideration than hydrolytic s t a b i l i t y  fo r  two reasons as follows: 1 )  the 
hydrolytic s t a b i l i t y  of a l l  fou r  FMW's in the severe water boil test  (see 
Appendix F, Page 152 was excel lent ,  and 2 )  the ultimate end use of com- 
posite products such as j e t  engine fan blades configurations demand ease 
of prscessi ng for faci  1 e fabrl" cation and h i  gk themo-oxi dati ve stabi 1 i ty  
for high performance a t  a l l  times regardless of h i g h  or low humidity en- 
vi ronments e 

The ultimate end use products 

Therefore, i t  was deemed logical t ha t  high thermo-oxi dati  ve 

Consequently, the 1500 and 2000 FMW candidates were eliminated be- 
cause of low thermo-oxidative s t a b i l i t y  and d i f f i cu l ty  i n  processing. 
combi nation of highest thermo-oxi dati  ve stabi 1 i t y  and ease of processing 

The 
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allowed the 1000 FMW candidate t o  be selected instead o f  the 1300 FMW mat- 
e r i a l .  T h i s  d i s t inc t ion  i n  the l a t t e r  case was not c lear ly  defined as f o r  
the 1500 and 2000 resins and represents a strong case f o r  fur ther  optimi- 
zation of FMW i n  the range of 1000 t o  1300. 
work was beyond the scope of this program. 

Howevers fur ther  prepolymer 

The 1000 FMW NA/MDA/PMDA A-type polyimide resin was u t i l i zed  f o r  the 
preparation and evaluation of Style 181 €-glass and h i g h  modulus graphite 
reinforced composites as  i s  discussed i n  Sections 4 and 5, respectively. 
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4. TASK I11 - PRELIMINARY FABRICATION STUDIES 

The higher degree of processabili ty and thermo-oxidative s t a b i l i t y  of 
the cured resin prepared from 1000 FMW NA/MDA/PMDA prepolymer as described 
i n  the preceding studies resulted i n  i t s  select ion f o r  preliminary fabr i -  
cation s tudies .  
ing conditions which resulted in acceptable prepregs sui table  f o r  prepara- 
t i o n  of  glass reinforced laminates, and 2) es tabl ish molding conditions 
which gave the best combination of laminate properties.  
prepregs prepared would be chgracterized f o r  the properties which could 
be used t o  ensure reproducible preparation of prepregs. 
cessing study was conducted t o  determine the cure temperature, time, pres- 
sure and post cure parameters required to  make specimens su i tab le  f o r  
mechanical property tes t ing  and eva lua t ion  The resu l t s  of these studies 
were analyzed by s t a t i s t i c a l  means t o  determine whether variations i n  the 
conditions caused s igni f icant  e f fec ts  on resu l tan t  mechanical properties 
of flexural strength and modulus a t  room and 550°F, shear strength and 
vo id  content (I 

4.1 PREPREG FABRICATION STUDIES 

The objectives of these studies were 1 )  determine process- 

In addition, the 

The molding pro- 

The 1000 FMW NA/MDA/PMDA prepolymer was employed as an amic-acid var- 
nish a t  40% w/w res in  sol ids  i n  dimethyl formamide t o  prepare prepregs 
from fabr ic  Style 181 E-type glass ,  All00 s o f t  amino s i lane  f in i sh .  This 

fabr ic  was impregnated by imers ing  i t  in the amic-acid varnish unt i l  i t  
was f u l l y  saturated a f t e r  which i t  was slowly pulled through half-inch 
diameter s tee l  wiper bars s e t  a t  a constant gap of 0.018-inch. 

Drying and imidiz ing  conditions were investigated for the impregnated 
materials a f t e r  which the resu l tan t  prepregs were characterized for resin 
solids content, vo la t i l e  matter content, and resin flow. Specific condi- 
t ions investigated and prepreg charac te r i s t ics  are  l i s t e d  i n  Table 1X. 
The t e s t  procedures used t o  characterize resin sol ids  content, vo la t i l e  
matter content and resin flow were generally i n  compliance w i t h  the methods 
defined by the Society of the Plast ics  Industry, Inc. (SPI )  Reinforced 
Plast ics  Committee (References 4 and 5) and a re  detailed in Appendix H. 
The only variations t o  these procedures were i n  the process ng temperatures 
emp 1 oyed e 
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Interpretation of the data i n  Table IX resulted i n  the select ion of 
four minutes "drying" a t  325°F and two minutes "imidizing" a t  475°F based 
upon the f o l l  owing analyses : 

The vo la t i l e  matter content of the prepreg a t  4.26% w/w 
w i t h  a res in  sol ids  content of 27.6% w/w provided a 
vola t i le / res in  content r a t i o  of 0.15. ( In  previous 
Task I1 studies i t  was found tha t  prepregs w i t h  an ac- 
ceptable degree of resin imidization were obtained when 
the vola t i le / res in  content r a t io  was a t  this l eve l ) ,  

o The resin flows a t  both 200 psi and 1000 psi employing 
th i s  prepreg were good, and 

a The general appearance of laminates fabricated was very 
good (par t icu lar ly  the translucent property),  

Only these particul a r  prepreg processing parameters provided acceptable 
1 ooki ng 1 ami nates a t  both mol d i n g  pressures. 

4.2 LAMINATE FABRICATION STUDIES 

The 1000 FMW NA/MDA/PMDA A-A prepolymer a t  a 40% w/w so l ids  loading 
i n  DMF was employed t o  prepare su f f i c i en t  prepreg fo r  fabr icat ion in to  
thirty-two 1/8-inch x 6-inch x 12-inch laminate specimens. The Style 181 
E-glass cloth prepregs were prepared employing the experimental conditions 
defined above. The reproduci b i  1 i ty  o f  prepreg samples was monitored by 
determination o f  resin and vol a t i  l e  matter contents ., The minimal vari - 
ation of these parameters i n  three prepreg samples prepared a re  shown i n  

TABLE X Table X .  

PREPREG PROPERTIES FOR LAMINATE FABRICATION STUDIES 

aRandom select ions from 75 yards of 12-inch wide prepreg. 
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A molding processing parametric study was undertaken t o  determine the 
e f f ec t  of processing temperature, pressure, duration and post cure on lamin- 
a t e  properties 
among the parameters i t  was decided t o  perform the experimentation i n  dupli- 
cate.  The processing conditions of i n t e r e s t  were durations of 30 and 60 
minutes, applied pressures of 200 and 1000 psi and pos t  cure o f  none and 
eight hours a t  600°F. The prepreg was molded a t  several exploratory cure 
temperatures in  an e f f o r t  t o  s e l ec t  a second molding temperature t o  the 
established 600°F molding temperature. During these studies i t  was estab- 
lished t h a t  a t  temperatures between 500°F and 590"F, good resin flow and 
laminate consolidation can be obtained. Howeverg laminates molded a t  
temperatures below 590°F f o r  extended cures of up t o  e ight  hours remained 
thermoplastic thus indicating t h a t  chain extension and/or crosslinking pro- 
ceeds a t  very slow rates  a t  the lower temperature ranges. 
molded a t  temperatures of 650°F and higher were generally delaminated and 
bl is tered.  
s t ra ted t h a t  good 1 ami nates could be molded a t  t h i s  temperature reproducibly a 

Thi s temperature, therefore was selected as the second mol d i  ng temperature. 

To permi t assessment of the s i  gni f i cance of interactions 

Laminates 

A molding temperature of 640°F was evaluated and i t  was demon- 

All of the panels prepared in th i s  four-factor,  two-level fac tor ia l  
experiment wi t h  rep1 i ca t i  on were molded i n an automati c pressure and temper- 
ature-controlled press using a 30-second closing r a t e .  A separator fi lm 
of aluminum f o i l  coated with Frekote 33 release agent was used on the t o p  
and bottom of each laminate. Two panels were molded f o r  each processing 
condition; a l l  panels were 13-plies thick,  6-inch long and 12-inch wide. 

Test specimens were cut from the panels i n  accordance w i t h  Figure 4 
and evaluated f o r  the properties compiled i n  Table XI e Determinations of 
flexural strength and modulus were performed i n  accordance w i t h  ASTM D790; 
the elevated t e s t s  a t  550°F were performed a f t e r  a 30-minute soak a t  550°F 
in  the a i r  c i rculat ing t e s t  chamber. 
the short  beam flexural t e s t  procedure with a span-to-depth r a t i o  o f  four. 
Standard deviations of these data were obtained from a m i n i m u m  o f  f ive  
determinations on a s ingle  panel. 

Shear strengths were determined u s i n g  

I n  order t o  calculate the void contents of the laminates, i t  was nec- 
essary t o  es tabl ish the density of the 1000 FMW IVA/[VIDA/P[VIDA cured polyimide 
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resin. The dens i ty  was determined t o  be 1 - 3 0  g/ml on a small molded plug 
using both the method defined i n  ASTM D790 and a l s o  by use of an a i r  pycno- 
meter t o  determine the specimen volume, Void conten ts  were c a l c u l a t e d  as- 
suming a d d i t i v e  volumes resin d e n s i t y  of 1.30 g/ml , the E-glass dens i ty  of 
2.54 g / m l ,  determined laminate d e n s i t i e s  and their resin contents  as  d e t e r -  
mined by burn-out of f ive gram lamina te  samples. 

The raw d a t a  of Table XI are  summarized i n  Table XI1 which shows the 
average values of laminate p r o p e r t i e s  obtained a t  specif ic  levels of a 
s i n g l e  parameter confirming the e f fec t  of o t h e r  parameters,  average va lues ,  
the r e p e a t a b i l i t y  of the measurement of the proper ty  on r e p l i c a t e  samples,  
and the pooled s t anda rd  dev ia t ion  of the measurement. The good repea ta-  
b i  l i  t y  and pooled s t anda rd  dev ia t ion  o f  measurement shows uniformity be- 
tween tes t  specimens and infers t h a t  reproduci b i  11 t y  i n processing condi t ions  
was a t t a i  ned. 

TABLE XI1 
SUMMARY OF LAMINATE PROCESSING STUDY RAW  DATA^ 

Parameter Level 
Temperature 600 

" F  640 
Cure Time 30 

mi n 60 
Cure Pressure 200 

psi 1000 
Pos t  Cure None 

Average 
Repeatabi 1 i t y  

8-hr a t  600°F 

1111 

LI 
c, 
ul 
C 
a, 'L .I.- 
U l n  
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The s t a t i  s t i  cal s i  gni f i  cance of the processi ng condi tions were deter-  
mined by analysis of variance f o r  the laminate properties of f lexural 
strength a t  room temperature and 55OoF, shear strength and void content. 

Details of these analyses a re  presented i n  Appendix H .  
the s t a t i s t i c a l  analyses a re  summarized i n  Table XI11 which identify the 
processing conditions found t o  a f f ec t  the laminate properties s ignif icant ly  
a t  a 99% confidence leve l .  In general the s t a t i s t i c a l  study showed t h a t  
interactions among the parameters were n o t  s ign i f icant .  The only excep- 
t ion t o  t h i s  finding was the void content, which exhibited several s ign i -  
f i can t  two-fold and three-fold interactions.  Therefore, the recommended 
processing conditions a re  600°F for  30 minutes under an applied pressure 
of 1000 psi and u t i l i za t ion  of no pos t  cure. 
using the recommended processing conditions are  shown i n  Table XIV. 

The resu l t s  of 

The average resu l t s  obtained 

TABLE XI! 
LAMINATE PROPERTIES OBTAINED USING 
RECOMMENDED PROCESSING CONDITIONS 

Flexural Strength a t  
Room Temperature 
Flexural Modulus a t  
Room Temperature 
Flexural Strength a t  
550" F 
Flexural Modulus a t  
550" F 
Shear Strength a t  
Room Temperature 
Woid Content 

91.7 Ksi 

5.13 Msi 

67.6 Ksi 

4.76 Msi 

7.0 Ksi 

1.9% v / v  
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5. TASK IV - EVALUATION OF COMPOSITE PROPERTIES 

The objective of this task was changed d u r i n g  the course o f  the pro- 
Ori g i  nal ly  i t  was intended t o  compare glass reinforced 1 aminates gram, 

employing the processing conditions ident i f ied i n  Task I11 and obtain de- 
t a i l ed  property information a t  400°F and 600°F before and a f t e r  a g i n g  
the specimens i n  a i r  fo r  one hour a t  400°F and 600OF. Because the under- 
lying purpose o f  this contract was t o  obtain and identify new and improved 
resins for  ultimate use w i t h  graphite f i b e r  reinforcements, i t  was de- 
cided t o  change the original objective t o  one of obtaining detai led pro- 
perty data from laminates prepared using a high modulus graphite f i b e r  
and the polyimide resin system ident i f ied in Task 11. The property in- 
formation t o  be obtained was flexural strength, flexural modulus, and 
shear strength prior t o  and a f te r  aging at400"F and 600°F f o r  d u r a t i 0 n s . u ~  
t o  1000 hours a t  test temperatures of 77"F, 400°F and 60OOF. 

Because of the change i n  scope of this task the processing procedures 
established during the Task 111 studies f o r  glass reinforced laminates 
provided only a starting p o i n t  in the processing of the graphite f i b e r  
reinforced lami nates. The nature of the h i g h  modulus graphi t e  reinforce- 
ment necessitated conducting a few preliminary screening studies f o r  the 
ident i f icat ion of preferred processing conditions. Signif icant  changes 
i n  processing were implemented in both prepreg preparation and composite 
mol d i n g  as discussed bel ow: 

0 - I n  Task 111, f u l l y  imidized glass 
epregs were prepared and used in 

molding the tes t  panels. Previous experience a t  TRW 
Systems has established t h a t  a fu l ly  imidiaed resin ma- 
trix f o r  unidirectional s graphite f i b e r  and boron f i l a -  
ment prepregs is n o t  su i tab le  because o f  the high 
f r a g i l i t y  imparted t o  the prepregs by the resin in t h i s  
form. I t  was decided, therefore,  t use tacky ami c- 
acid prepregs fo r  the Task % V  stud1 

0.125-inch or l e  - si  t u  approach t o  
stacked prepreg 
heated t o  the re 
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imidization proceeds while the mold is closing. 
approach was studied spec i f ica l ly  fo r  molding thicker sec- 
t ions .  
in an a i r  c i rculat ing oven a t  temperatures below 3OOOF fo r  
20 hours and longer. Optimization of e i the r  of these pro- 
cesses has not been accomplished, however, the most pract i -  
cal experience has been obtained w i t h  the second approach. 

The second 

I n  t h i s  case, the pre-stacked prepreg is imidized 

Because an important application of resins developed under this con- 
t r a c t  would be f o r  a i r  breathing engine compressor blades w i t h  thick sec- 
t ionsg  i t  was decided t o  explore the slow imidization approach f i r s t  w i t h  
the consideration tha t  i f  adequate properties were n o t  achieved in the 
f i r s t  attempts, then the in  s i t u  imidization process would be used instead. 

Thornel 50S, high modulus graphite f i b e r  surface t reated and sized 
with TRM P13N polyimide res in ,  was used as the reinforcement f o r  this ef-  
f o r t .  The procedures used t o  prepare the prepreg, t o  mold the composite 
panels, and t o  evaluate the materials are  detailed below. Properties of 
the resul t i  ng  composites a re  provided together wi t h  an analys 1’s of these 
data a 

5.1 DRUM WINDING OF GRAPHITE 

Prel imi nary prepreggi ng e f fo r t s  were i ni t i  ated u s i n g  Thornel 50s yarn 
pretreated and sized w i t h  P13N polyimide resin.  
pared using the drum winding  equipment shown in Figure 5. These tapes 
were 3-inch wide and approximately 93-inch l o n g .  

Prepreg tapes were pre- 

Impregnation of the yarn in these preliminary e f fo r t s  u t i l i zed  a d i p  
t a n k  and wiper bars t o  control the resin content of the s ingle  strand. A 
s e t  gap of 0.021-inch f o r  the wiper bars provided a wet resin pick-up of 
approximately 65% w/w (approximately 45% w/w dry resin sol ids content) e 

The resul tant  prepreg had f a i r l y  good collimation, b u t  suffered from ex- 
cessive yarn fraying. 

Preparation of the prepreg used in the f inal  t e s t  panels employed a 
spray gun attachment t o  the drum winding equipment f o r  f i b e r  impregnation 
and resin content control. (This technique was developed by TRW Systems 
d u r i n g  company-supported boron f i 1 ament/Pl3N composi t e  s tudies)  A1 1 of 
the graphite prepreg produced by this approach had excellent collimation 
and there was no apparent yarn fraying. 
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Fi gure 5 Monof i 1 ament Drum Winding Apparatus 
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5.1.1 Prepreg Processing Details 

Mylar fi lm, 0.002-inch thick,  was applied t o  the drum. The Thornel 

Varnish a t  40% w/w 
50s then was wound onto the Mylar backing film a t  72 yarns per inch spac- 
ing a t  a wind ing  speed of 72 l inear  f e e t  per minute. 
res in  sol ids  was sprayed onto the yarn as i t  was collimated. Actual w i d t h  
of the spray "fan" was two inches which provided a one-inch wide post- 
coating band on the collimated yarn as well as pre-coating a one-inch wide 
band o f  the Mylar film as the traversing head progressed along the drum. 

5.1 2 Prepreg Control Tests 

The resu l tan t  prepreg was characterized f o r  vo la t i l e  matter and resin 
so l ids  contents. 
of prepreg specimens a f t e r  exposure t o  6 O O O F  f o r  t h i r t y  minutes. Resin 
so l i  ds contents were determi ned on the re ta i  ned vol a t i  1 e matter contents 
specimens a f t e r  the resin was removed by acid digestion. Properties of 
the prepregs were: 

Volatile matter contents were determined by weight loss 

Resin sol ids  content 43.5% W/W 

~ o l a t i l e  matter content 20.2% W/W 

5.2 COMPOSITE MOLDING 

The few processing screening s tudies  undertaken were directed a t  mold- 
i n g  an acceptable Thornel 50S/polyimide composite panel, however, opt'imiza- 
t ion of the molding processes f o r  this 
project schedule constraints .  The f i r s t  approach investigated u t i l i zed  a 
long, low-temperature, imidization cycle of the stacked prepreg. 
panels were n o t  produced readi ly  by this method; the experimental e f f o r t s  
then were directed toward the rapid i n-mold imidization process. 
believed t h a t  fur ther  investigation of the slow imidization processing 
method i s  warranted and when optimi zed would provi de composites exhi b i  t i  ng 
excellent end properties.  
t e s t  panel fabri  cation procedures are  presented i n the f o l l  owi ng sec t i  ons . 
5.2.1 Slow Imidization Studies  

material was not possible within 

Good 

I t  i s  

Details of the exploratory studies and o f  the 

The tacky prepreg was cut  t o  s i ze ,  3-inch wide by 3.75-inch long, 
and stacked nine-ply thick.  
para l le l  w i t h  the  3.75-inch dimension. 

The  longitudinal axis of the f ibe r s  were 
T h i s  preform then was d r i ed  and 
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imidized in an a i r  c i rculat ing oven. 
t e r  consi derabl e f i b e r  movement occurred w h i  ch resulted i n  gaps s voids 
and uneven yarn collimation of the prepreg preform a f t e r  imidization. In 
an e f f o r t  t o  prevent t h i s ,  a 0.4-lb weight (0.033 psi) was applied t o  the 
prepreg during the dryi ng and/or imi d i  z i  ng cycl es a 

As a r e su l t  of escaping vo la t i l e  mat- 

Specific drying times examined were u p  t o  two hours a t  150°F followed 
by u p  t o  two additional hours a t  200°F. The drying cycles were evaluated 
with and without the 0.033-psi applied pressure, The dried preforms were 
imidized w i t h  and without the applied 0.033 psi pressure fo r  30 hours a t  
300°F i n  an a i r  c i rculat ing oven. 

The resul tant  preforms from these studies suffered from e i t h e r  exces- 
s ive f i b e r  movement when no pressure was applied during the drying and 
imidizing cycles or too low a resin content when pressure was used. 
Several of the be t t e r  looking preforms were molded a t  640°F under 200 psig 
pressure for  60 minutes (conditions employed d u r i n g  Task I11 s tud ies )  and 
were tes ted.  Mechanical properties of the best  panel tes ted were 88.5 K s i  
flexural strength,  25.7 Msi flexural modulus and 4.5 Ksi interlaminar 
shear s t rength;  these properties were considered t o  be low. 

I t  was concluded a t  t h i s  time t h a t  by adjustment of the drying and 
imidi zing temperatures, times and pressures, the process could be optimized 
t o  provide be t te r  properties.  Because th i s  e f f o r t  was n o t  directed towards 
process optimization, i t  was decided t o  u t i l i z e  the method of in s i t u  imi- 
d i  zati  on dur ing  the mol d i  ng cycle e 

5.2.2 Panel Mol d i n g  Studies 

Panels were molded from non-imidized prepreg using a number of com- 
binations of the conditions as follows: 

Cure temperature, O F :  600 and 640 

Cure pressuresg p s i g :  100, 200 and 500 

Dwell times, :sec:  50, 60 and 80 

The resu l tan t  panels produced i n  these screening studies indicated t h a t  
the best combination of molding conditions were 600°F temperature, 500 psig 
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pressure and a 50 second dwell time. 
the general appearance of the composites t h e i r '  resi n contents (~37% w/w) , 
density ( ~ 1 . 5 )  and v o i d  contents ( < O . l % )  

These conclusions were drawn from 

I n  some of the e a r l i e r  molded panelsg a compression f a i lu re  occurred 
i n  the composites during the molding cycle. 
the following visual charac te r i s t ics :  

T h i s  f a i l u r e  was evident by 

An e l  1 i p t i  cal surface di scol orat i  on occurred on the top 
and bottom surfaces of the panels 

Cross-sectioning o f  t h i s  discolored area showed the resin 
mat r ix  t o  be powdered and the f ibers  were crimped o r  
buck1 ed e 

The cause of t h i s  f a i l u r e  was a t t r ibu ted  t o  the h i g h  end s t resses  
d u r i n g  cooling resul t ing from the large difference in the longitudinal co- 
e f f i c i en t s  of thermal expansion of graphite f ibers  and the s tee l  mold. 
problem was solved by cutt ing the graphite prepreg a t  l e a s t  3% shorter  than 
the mold length. 

T h i s  

5.2.3 Test Panel Molding 

Panels were molded fo r  evaluation of properties by the following pro- 
cess. 

Prepreg prepared i n  accordance w i t h  Section 5.1.1 was cut  6-inch long 
by 8-inch wide and stacked 8-plies thick. A s tee l  mold w i t h  a 9-inch long 
by 8-inch wide cavity was ins ta l led  i n  an e l ec t r i ca l ly  heated platen 
hydraulic press and was preheated t o  600°F. All mold surfaces were coated 
w i t h  Frekote 33 release agent. 

The stacked prepreg then was' dropped i n t o  the mold cavity and the mold 
was closed so t h a t  contact was made w i t h  the preform b u t  no pressure was 
applied. Total press closing time was approximately 10 seconds. A to ta l  
dwell time of 50 seconds was used (from f i r s t  contact t o  application of 
the fu l l  molding pressure of 500 p s i g ) .  This pressure was maintained auto- 
matically throughout the cure cycle of 60 minutes. 
were prepared. The cooling processes fo r  the cured panels varied since the 
exact technique fo r  obtaining crack-free panels was developed d u r i n g  t h i s  
e f f o r t .  Panel 1 was cooled under f u l l  molding pressure and was severely 
cracked upon removal from the mold. Panel 2 was removed from the mold hot 

A to ta l  of f ive  panels 
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and cracked while cooling i n  the unrestrained condition. 
ing cycle was used on Panel 3 as follows: 

A stepwise cool- 

a .  Pressure was released completely and then 15 psi pres- 
sure was applied. 

b. The mold was cooled t o  500"F, where i t  was opened and 
then 15 psi pressure was reapplied. 

The above ( b )  was repeated a t  400"F, and 300°F mold 
temperatures e 

c.  

d.  After the mold had cooled to  200°F the p a r t  was removed. 

The resul tant  panel was crack-free. Subsequently, i t  was decided t o  
cool Panel 4 i n  the mold under 15 psi pressure d i rec t ly  down t o  200°F. 
Cooling was accomplished using circulat ing cold water i n  the press platens. 
The resul tant  panel was crack-free, consequently, Panel 5 was molded by the 
same process. This panel was retained and submitted fo r  evaluation by NASA 
Lewis Research Center. 

In addition t o  the evolution of a process f o r  molding crack-free panels, 
there was also a noticeable improvement of the general appearance of panels 
from Panel 1 to  Panel 4. I t  was apparent t h a t  panels molded by the tech- 
niques used fo r  Panels 4 and 5 would provide the best  end properties.  I t  
was necessary t o  use Panels 1 
specimens t o  permit five-fold repl icat ion of the properties of the 

2 ,  3 and 4 t o  prepare a suf f ic ien t  number o f  

composi t e s  under each of the specified t e s t  conditions 

5.3 COMPOSITE TESTING 

T h e  four graphite reinforced t e s t  panels were machined i n t o  flexural 
and shor t  beam shear t e s t  specimens and the following prcperties were de- 
termi ned: 

Flexural s t rength,  f lexural modulus and shear strength 
a t  room temperature, 400°F and 600°F. 

Flexural strength flexural modulus and shear strength 
a t  400°F and 600°F a f t e r  aging i n  a i r  c i rculat ing ovens 
maintained a t  400°F and 600°F f o r  100, 500 and 1000 
hours 

Weight-loss a f t e r  thermal ly  a g i n g  a t  the above conditions e 

Composite physical properties ( spec i f ic  gravity 
content voi d content and 8-ply thickness) 

resin 
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All of the above properties were determined u s i n g  industry accepted 
t e s t  methods o f  the American Society f o r  Testing and Materials (ASTM) 
t a i  1s of the t e s t  procedures are presented i n Appendix G. 

De- 

5.3 1 Specimen Preparati on 

Each of the four panels were cut i n to  19 flexural t e s t  coupons and 
19 short  beam shear t e s t  coupons. The flexural t e s t  coupons from each of 
the four panels were numbered consecutively i n  an identical  manner. Shear 
t e s t  coupons were numbered in  the same manner. All of the coupons were 
machined w i t h  a diamond impregnated cutt ing wheel, 0.040-inch thick; water 
soluble o i l  was used as a coolant. 
sions of 3.0-inch long, 0.50-inch wide; shear specimens were 0.60-inch long 
by 0.25-i nch w i  de. 

Flexural specimens had nominal dimen- 

During the elevated temperature tes t ing  of the unaged shor t  beam shear 
strength specimens, an equipment malfunction occurred resul t i  ng i n the 1 oss 
of the following ten specimens:* 

1-7 2-5 2-1 7 3-13 4-7 
1-14 2-1 2 3-6 3-1 5 4-8 

These specimens were rep1 aced w i t h  additional coupons machined from surplus 
pieces o f  the same t e s t  panels. 

5.3 2 P h v s i  cal ProPertv Results 

The physical properties of the four t e s t  panels were determined on 
representative specimens a f t e r  mechanical property tes t ing  and are  reported 
in  Table XV.  

permit the f o l l  owi ng observations : 
Interpretation of these data in terms of molding conditions 

The high resin contentg low void content and aood densitv 
of panels 1 and 2 are a r e su l t  of s l i gh t ly  lower r a t e  o f  
pressure appl i ca t i  on e 

I t  appears tha t  the pressure was applied t o  Panel 3 a l i t -  
t l e  too rapidly resul t ing i n  low resin contentg thinner 
specimensg and a marginally h i g h  resin content. 

The molding conditions used t o  prepare Panel 4 appear t o  
prdduce close t o  optimum physical properties e 

*Coupon designations r e fe r  t o  panel number fol 1 owed by coupon number e 
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TABLE XV 
PHYSICAL PROPERTIES OF TEST PANELS 

Resin Void I Avga 
Panel Content I Density Thickness Content 
Number % w/w ; % Y/V  g/ml L 10-3 inch 

1 41.5 I -2.4 1.51 72.3 

2 44.5 j -0.5 I 1.47 76 .O 

3 38.1 1 , .  2.4 I 1.45 66.9 

4 36.9 j -0.6 1 1.50 72.4 

' 

I 

I - 

Avg of specimens pr ior  t o  testing after 100 hours aging a t  
400°F; Number of measurements: 7 each f o r  Panels 1 and 3; 
8 f o r  Panel 2 ;  and 3 f o r  Panel 4. 

a 

5.3.3 Mechanical Property Results 

The mechanical property resul ts  of b o t h  aged and unaged specimens ex- 
hibited considerable property variation. In general i t  was observed tha t  
Panels 1 and 2 had lower property resu l t s  than those of Panels 3 and 4 u n -  
der comparable t e s t  and aging conditions. The raw data from these studies 
a re  reported i n  Appendix H together w i t h  the s t a t i s t i c a l  ident i f icat ion of 
some "wild" data. A summary of the t e s t  resu l t s  a f t e r  re ject ion of the 
"wild" data is presented in Table X V I  together w i t h  the averaged values 
f o r  weight  loss a f t e r  aging. The corrected data has a considerably high 
degree of var iab i l i ty  (pooled standard deviations: flexural strength - 
12.9 Ksi; modulus - 1.73 Msi; and shear strength - 0.88 Ksi). Although 
the general trends were fo r  lower values fo r  Panels 1 and 2, there was no 
clear-cut s t a t i s t i c a l  reason fo r  re ject ing these lower data,  

In s p i t e  of the h i g h  var iab i l i ty ,  the room temperature flexural strength 
and modulus of unaged specimens are  higher than those reported fo r  Thornel 
50/epoxy and Thornel 50S/epoxy composites (Reference 6)  Mechanical pro- 
perty data as a function of temperature w i t h o u t  aging show t h a t  400°F tes t  
temperature had l i t t l e  e f f ec t  on flexural strength,  modulus and shear 
strength whereas a t  600°F t e s t  temperature the flexural strength retention 
i s  ~ 8 0 % ~  the flexural modulus retention is  %85% and the shear strength re- 
tention is  ~ 7 4 % .  
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I t  i s  in te res t ing  t o  observe tha t  the properties of specimens aged f o r  
100 hours a t  400°F and 600°F were considerably higher than those observed 
f o r  the unaged specimens a t  comparable t e s t  temperatures. Aging a t  400°F 

fo r  longer periods showe negl j g i  bl  e a f f ec t  on properti es However aging  
a t  60QOF caused a s ign i f icant  degradation of mechanical properties.  After 
1000 hours aging ,  over 75% of the @sin had been removed from the compo- 
sites and the specimens were not  su i tab le  f o r  testing. This last finding 
i s  most interest ing i n  1 ight of the f a c t  t ha t  the 1 OOQ FMW NA/MDA/PMDA mat- 
e r i a l  was selected because neat resin p l u g s  exh ib i t ed  excellent resin weight 
retention as a function of aging  i n  air a t  600°F. 
ported i n  Section 3.2.5.2 indicated t h a t  only a 12% weight loss  was observed 
a f t e r  1000 hours a t  600°F which appears t o  be contrary to  the findings from 
the composite specimens 
pears t o  be based i n  variation i n  the surface area-to-volume ratios f o r  the 
two types of samples. 
f i n d i n g  i s  presented i n  Section 5.3.4. 

The property data re- 

A reasonable expl ana t fon  fo r  t h i  s difference ap- 

Details o f  the interpretat ion of t h i s  experimental 

5 -3.4 Parameters Affecting Elevated Temperature Aging Behavior 

T h i s  section discusses 1 )  the e f f ec t  of sample s i ze  and shape and 
velocity of a i r  on the behavior of specimens aged a t  elevated temperature, 
and 2 )  provides recommendations fo r  control of t e s t s  t o  ensure generation 
of information su i tab le  fo r  comparative evaluation of materials.  

I t  i s  reasonable t o  expect t ha t  uniform chemical attack (such as a i r  
oxidation) would cause a more detrimental e f f ec t  t o  specimens having larger  
surface area-to-volume ra t io .  The flexural specimens (average dimensions 
0.5-inch wide x 3.0-inch long x 0.073-inch h i g h ,  surface area/volurne = 

32.1 inch-’) have a surface area-to-volume r a t i o  over 26 times greater  than 
neat resin plugs (dimension 1 .O-inch diameter x 0.025-inch h i g h ,  surface 
area/volume = 1 . 2  inch-’). 

The extent t o  which oxidative attack could cause a degrading change 
i n  the mechanical properties of the composite has been examined semi-quan- 
t i  t a t i  vely, This analysis i s  based on the f ac t  tha t  the mechanical pro- 
per t ies  retention is inversely related to  res in  weight loss .  Therefore, 
i t  i s  possible t o  predict  the weight loss of a composite using the weight 
loss information on the neat resin plug a t  600°F and assuming 1 )  the weight  
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loss of a specimen is d i rec t ly  re la ted t o  available surface area,  and 2) 
the total  surface area of the composite specimens i s  available fo r  attack 
and i s  constant throughout aging. 
from neat resin aging information were calculated as follows: 

The predicted weight loss  f o r  composites 

where: 

= the predicted weight loss of the composi t e  a wc 
A = the surface area of the specimen noted by the subscr ipt ,  

( c  fo r  composite and p for  neat resin plug) 

w = the weight of the neat resin plug 

f, = the f ract ion of neat resin loss a f t e r  aging for a 
P 

spec i f ic  time. 

A comparison of the observed and predicted weight loss u s i n g  the above 
formula i s  shown i n  Table XVII. The re la t ive  good agreement observed tends 
t o  substantiate the 
specimen i s  d i rec t ly  re la ted t o  the exposed surface area and the inherent 
ab i l i t y  of the material t o  withstand thermal oxidation.* 

hypothesis, namely, t h a t  the weight loss of a 

The assumption tha t  a l l  of the surface of the composite i s  available 
fo r  oxidative attack i s  val id  a t  the beginning of aging, however, as the 
resin i s  consumed and graphite f ibe r  appears, l ess  la te ra l  surface area re- 
mains exposed. As was observed in the neat resin plugs (Page 31) the ag- 
ing plugs develop a considerable number of small micro cracks, presumably 
caused by re1 ieving residual s t resses  i n  the specimens thereby permitting 
a larger surface area available fo r  oxidative attack. 
difference between coeff ic ient  of expansion between the resin and graphite 
f ibe r  provides a potential means fo r  oxidative attack o f  the resin immedi- 
a te ly  surroundi ng the f i b e r s  

In addition, the 

"Extrapol ation of t h i s  approach t o  standard glass reinforced flexural speci - 
mens (4.0 x 1.0 x 0.125-inch surface area/volume r a t i o  o f  18.5 inch-1) shows 
tha t  a f t e r  1000 hours aging i n  a i r  one would predict  a weight loss of  $2.0 g ,  
o r  only $12% w/w weight loss.  
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TABLE XVII 
COMPARISON OF PREDICTED AND OBSERVED 6OOOF 

WEIGHT LOSS OF GRAPHITE REINFORCED FLEXURAL SPECIMENS 

Aging f Predi ctedD i Observed 
Duration, a 1 Weight LossI 1 Weiqht Lossc 

100 0.12 ! 0.11 
i 0.060 1 0.38 i 0.44 

0.115 ! 0.74 0.82 
I 
I 

500 

1000 
I 

aFractional weight loss of neat resin plug 

bPredi cted using Equation 7 ~ 

‘Average of weight losses determined on specimens aged 
fo r  both  400°F and 600°F property tes t ing.  

The ef fec t  o f  surface area-to-volume on weight loss is  fur ther  rein- 
forced by comparing the resul ts  of  the flexural and shear t es t  specimens. 
The weight loss of the shear specimens was uniformly higher than t h a t  of 
the flexural specimens. T h i s  finding is  d i rec t ly  related t o  a comparison 
of the surface area-to-volume r a t i o  of the t e s t  specimens; 38.7 inch-’ fo r  
the smaller shear t e s t  specimens compared t o  a 32.1 inch-’ value f o r  the 
flexural specimens. 

The differences i n  a i r  velocity maintained over the specimens during 
aging may account f o r  fur ther  variations in observed weight losses between 
the neat resin plugs and the composite tes t  specimens. 
controls the diffusion boundary layer thickness in the vicini ty  of the 
specimen which in t u r n  a f fec ts  the r a t e  of oxidation (depending on the 
oxidation kinetics a t  the temperature under question) The forced a i r  
ovens which were used t o  age the composite specimens had a velocity o f  
250 f t / m i n  a t  an a i r  change r a t e  of 400 f t 3 / m i n  (11,812 l/min), which i s  
considerably more than the 0,100 l/min maintained over the neat specimens 
during the aging studies reported i n  Task 11, The increased velocity in 
the composite studies would permit more e f f i c i en t  attack of the surface 
area exposed on formation of micro cracks. 

The a i r  velocity 
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The velocity i n  the forced a i r  oven was so great t ha t  i n  the 1000-hour 
aging t e s t  the resin had degraded t o  such an extent tha t  some of the graph- 
i t e  f ibers  were vibrating i n  the air stream potent ia l ly  adding a mechanical 
agi ta t ion e f f ec t  t o  the r a t e  of a i r  oxidation. The graphite f ibers  were 
so badly entwined i t  was n o t  possible t o  measure the weight of the indivi-  
dual specimens and i t  was necessary t o  combine a l l  ten specimens aged fo r  
1000 hours a t  600°F together t o  obtain a measure o f  weight loss. 

From the findings i t  is qui te  evident tha t  the nature of the isothermal 

A question one must ask i s  whether a mechan- 
a g i n g  t e s t  i s  of s ign i f icant  importance in making comparisons between d i f -  
fe ren t  reinforced composites. 
i ca l  property obtained on a 0.073-inch thick composite a f t e r  aging a cer- 
ta in  length of time i s  representative of what tha t  composite may have when 
employed i n  a much thicker par t .  The only meaningful approach fo r  t h i s  kind 
of tes t ing i s  t o  ensure tha t  comparative specimens a re  tes ted by identical  
t e s t  methods and even then the extrapolation o f  these data t o  larger actual 
component parts i s  subject t o  question unless the surface area-to-volume 
r a t i o  of the t e s t  specimens i s  taken into account. 

The observations clear ly  point out the need f o r  specifying the s i z e  
and shape o f  the specimens and the velocity of a i r  when conducting thermo- 
oxidative aging tes t ing  together w i t h  the temperature and duration of t e s t .  
Additional study i n t o  these important parameters appears t o  be warranted 
t o  define the i r  e f f ec t  on aging of t e s t  specimens. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

Summarized below are the conclusions reached d u r i n g  this experimental 
Based on the e f f o r t  t o  study improved thermally s t ab le  laminating resins.  

findings recommendations are given f o r  fur ther  material and process improve- 
ment s tudies .  

6 e 1 CONCLUSIONS 

1 .  

2 .  

3. 

4. 

5. 

6. 

7. 

Based on the experimental studies of model compounds a 
preliminary theory f o r  the mechanism of pyrolytic polymeri - 
zation has been generated. 
i nvol ves two d i s t i n c t  chemical reacti  ons ; the f i  rs t bei ng 
a par t ia l  completion of a reverse Diels-Alder reaction of 
the react ive end groups followed by a second l inear  exten- 
sion and crosslinking reaction of the products and unre- 
acted materials of the f i r s t  reaction. 

Simply s ta ted ,  the mechanism 

Model compound s t u d i  es i den t i  f i ed  the minimum temperature 
t o  ensure effect ive pyrolytic polymerization t o  be 550°F. 

O f  the two reacting a l i cyc l i c  prepolymer end groups studied, 
the nadic anhydride was ident i f ied as the best endocyclic 
materi a1 f o r  preparation of superi or  polymers by pyrolytic 
polymerization. 

A new A-type polyimide prepolymer consisting of  nadic an- 
hydri de/pyromell i t i  c dianhydridehethyl ene d i  ani 1 i ne hav- 
i n g  a FMW of 1000 was ident i f ied as possessing excellent 
processing character is t ics  f o r  conversion t o  a high molec- 
ular  weight polyimide polymer having improved thermo-oxi- 
dative and hydrolytic s t a b i l i t i e s .  

Laminate processing studies were undertaken fo r  prepara- 
t i  on of glass r e i  nforced 1 ami nates 
which showed the best combination of f lexural properties 
a t  room and 550°F temperatures, room temperature shear 
strength and minimum void contents were 600°F molding  
temperature 1000 psi appl ied mechani cal pressure 30-mi n- 
Ute processing duration and no pos t  cure. 

Process condi t i  ons 

Processing methodology was established f o r  preparing crack- 
f ree  Thornel 50s graphi t e  fiber reinforced composi tes w i t h  
the recommended new A-type polyimi de formulation * Speci f i  c 
techniques were developed involving control of cooled down 
r a t e  and u t i l i za t ion  of an 
f o r  expansion of the graphite f ibe r  on cooling. 

oversize mold t o  compensate 

To permit valid comparison of the thermo-oxidative reten- 
t ion of  properties of a variety of composites, thermal 
aging methodology must include ident i f icat ion of sample 
s ize  and shape fo r  r a t e  of a i r  flow by the sample, 
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6 .2  RECOMMENDATIONS 
Further s tudy of model compounds i s  warranted towards 
achi evi ng s t i  11 fur ther  reduced processi ng conditions . 
Specific emphasis should be placed on control of the 
two d i  s ti nct curi ng  reactions by modi f i cat i  on of chemi - 
cal composition, u t i l i za t ion  of catalysts  and regulation 
of the degree of crosslinking through pressure control 

Polymer synthesis and characterization studies should be 
conducted t o  confirm t h a t  the conclusions reached with 
model compound studies can be attained. 

The f i  ndi ngs on the oxidati ve degradati on of graphi t e  
f iber  reinforced composites indicate a s tudy should be 
conducted t o  determine the e f f ec t  of oxygen par t ia l  
pressure and degree o f  s t r e s s  applied t o  the specimen. 
These studies would permit simulation of conditions t o  
be encountered when employed in  h i g h  performance j e t  
engine components. 

Further processing studies should be undertaken t o  o p t i -  
m i  ze f abri  cation procedures and t o  determi ne the e f f ec t  
of post curing on g:raphi t e  f i be r  reinforced composi tes  . 
F i n a l  ly , i t  i s  recommended from observations made d u r i n g  
this program, tha t  spec i f ic  formulations amenable t o  auto- 
clave molding of composites should be investigated t o  
determine the merit of the A-type polyimides for  this 
appl i cation. 
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7 .  N E W  TECHNOLOGY 

T h i s  section provides di scussi ons of new applications of the res i  n 
system recommended i n  t h i s  program together w i t h  new approaches for  proces- 
sing graphite. These concepts are believed t o  be of su f f i c i en t  novelty 
t h a t  invention disclosures have been submitted t o  the TRW Patent Office. 
The subject matter of these disclosures are  l i s t e d  below: 

Docket No. T i t l e  
4766 Polyimide Resin Precoati ng of Graphite or 

Carbon Fi 1 aments 

70-1 76 Thermo-oxidatively Stable Polyimide 
Composition 

51 02 Production of A-type Polyimide Reinforced 
Compos i tes  

5112 Bag Molding Technique f o r  Reinforced P1 a s t i c  
Compos i tes  

70-1 92 Production of Crack-Free Graphite Reinforced 
P1 as t i c  Composites 

A separate report coveri ng these disclosures has been submitted to  
the NASA LeRC Technical Util ization Officer.  A brief discussion of these 
inventions, t h e i r  novelty, features and applications is  presented below. 

7.1 POLY IMIDE RESIN PRECOATING OF GRAPHITE OR CARBON FILAMENTS 

During the processing studies of this program i t  was observed tha t  A- 
type polyimide resins  are useful i n  pre-coating graphite f i b e r  strands.  The 
pre-coati ng w i t h  a typical A-type polyimi de such as the commerci a1 l y  avai 1 - 
able P13N, from a d i lu t e  solution ( l e s s  than 2% w/w) will r e s u l t  i n  a sized 
yarn which eliminates the fuzzy surface of these fibrous materials,  there- 
fore ,  permits accurate coll imation of f ibers  a Sizing graphite f ibers  with 
an A-type polyimide resu l t s  i n  a f i b e r  product s imilar  t o  t ha t  normally ob- 
tained w i t h  epoxy res ins ,  however, the polyimide permits in tegr i ty  of the 
sizing - resin interface a t  temperatures which normally degrade epoxies 
(>400" F )  

7 .2  THERMO-OXIDATIVELY STABLE POLY IMIDE COMPOSITION 

Dur ing  t h i s  program a highly promising formulation modification of the 
A-type polyimide was ident i f ied as having enhanced thermo-oxidative s t a b i l i t y .  
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This resin system (1000 FMW NA/MDA/,PMDA) demonstrated greater weight re- 
tention of in back-to-back comparisons with other candidate formulation 
modifications on aging in a i r  a t  600°F. 
tem as a laminating resin was demonstrated by preparation of glass and 
graphite f ibe r  reinforced composites a 

The u t i l i za t ion  of this resin sys- 

7.3 PRODUCTION O F  A-TYPE POLYIMIDE REINFORCED COMPOSITES 

Processing procedures have been ident i f ied which permits production 
of thick ( u p  t o  1/2-inch) prepreg lay-ups or  wrappings yielding composites 
having low void contents and good s t ructural  in tegr i ty .  These preforms 
were prepared from unidirectional amic-acid A-type polyimide prepregs by 
laying up the amic-acid prepreg t o  the desired thickness and then imidiz- 
ing the lay-up f o r  re la t ive ly  long  cycles (1124 hours) a t  low temperatures 
(~300°F)  a t  ambient pressure. 
niques used t o  prepare laminates from fu l ly  imidized glass prepregs. 

These preforms are molded by the same tech- 

7.4 BAG MOLDING TECHNIQUE FOR REINFORCED PLASTIC COMPOSITES 

Processing studies of the 1000 FMW NA/MDA/PMDA A-type polyimide formu- 
la t ion showed t h a t  i t  possesses excellent flow character is t ics  and hence, 
offers  promise in bag molding processing methodology. This high resin flow 
property i s  important t o  vacuum bag ,  autoclave, pressure bag, and hydroclave 
fabrication because i t  permits molding a t  low pressures (50-200 psi) and a t  
re1 a t i  vely low heat-up ra tes  (3-1 5"F/mi n )  . 
7.5 PRODUCTION OF CRACK-FREE GRAPHITE R E I N F O R C E D  PLASTIC COMPOSITES 

Molding procedures were developed tha t  produced crack-free, s t ruc tura l ly  
sound composites from the candidate polyimide/graphi t e  prepregs e These' pro- 
cedures circumvented the problems of cracking and compressive fa i lures  in the 
composites during molding in  a closed mold. The method consists of 1 )  cut- 
t ing the prepregs approximately 3% shorter  t h a n  the mold cavi ty ,  and 2 )  re- 
leasing the molding pressure and restraining the composite against warping 
during cool -down 
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APPENDIX A 
MODEL COMPOUND SYNTHESIS AND CHARACTERIZATION STUDIES 

The synthesis and characterization of the two model compounds discussed 
i n  Section 2.1 was the f i r s t  experimental work performed i n  the program. In 
one case i t  was necessary t o  prepare a model compound precursor. 
a1 ly ,  3,6-endooxy-l,2,3,6-tetrahydrophthali c anhydride s (oxynadi c anhydride) 
was prepared and subsequently converted t o  N-phenyl 3,6-end0oxy-1~2~3 $6- 
tetrahydrophthal imide (N-phenyl oxynadimi de) .  N-phenyl 3,6-endomethyl ene- 
1 ,Z93,6-tetrahydrophthal imide (N-phenyl nadimide) was prepared d i rec t ly  from 
recrystal l ized nadic anhydride. A detai led description of the synthesis and 
characterization of these compounds is  given below. 

Specific- 

A.1 MODEL COMPOUND SYNTHESIS 

A.  1 1 3,6-Endooxy-1 92 ,3,6- tetrahydrophthal i c Anhydri de 

A quantity of 980 g (10.0 moles) of maleic anhydride was dissolved w i t h  
stirring i n  817 g (12.0 moles) of furane a t  50°C. 
was completely d i  ssol ved, heati ng and s t i  rri ng were termi nated. The pro- 
duct c rys ta l l ized  from solution and was isolated by vacuum f i l t r a t i o n  and 
dried t o  give 800 g (48%) of white c rys ta l s .  
from equal volumes o f  petroleum e i the r  ( b . p .  60-110°C) and acetone yielded 
product i n  white needles; m.p. 107-108°C. 

After the maleic material 

Recrystall ization (twice) 

A.1.2 N-phenyl 3,6-Endooxy-l,2,3,6-tetrahydrophthal imide 

A quantity of 332 g ( 2  .O moles) of 3,6-endooxy-l,2 93,6-tetrahydro- 
phthalic anhydride (prepared above) was dissolved i n  100 ml o f  DMF. To 
this s t i r r e d  solution a t  30°C was added 196 g 
the solution was stirred f o r  90 minutes, followed by addition of 16 g 
(0.2 mole) of anhydrous sodium acetate  and 204 g (2 .0  moles) o f  ace t ic  an- 
hydride. The resul t ing mixture was s t i r r e d  f o r  one hour a t  50"C, then a l -  
lowed t o  cool to  25°C. The product formed was collected by vacuum f i l t r a -  
t ion and dried t o  give 467 g (93%) of white crystals.,  
from methanol gave white p la te le t s ;  m,p.  156-157'. 

(2.1 moles) of an i l ine  and 

Recrystall ization 
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A .  1 -3  N-phenyl Nadimi de 

A quantity of 246 g (1.5 moles) f nadic hydride (re rystal l ized t o  
a 1°C melting point range) was dissolved i n  a co-solvent consisting of 450 
ml of toluene and 225 m l  of DMF. 
moles) of  ani l ine and the mixture was heated and s t i r r e d  under reflux fo r  
18 hours, during which time water formed from the imidization was collected 
in a Dean-Stark t rap.  One-half of the solvent (l~400 ml) was stripped under 
vacuum on a rotary-evaporator and the remainder of the solution was allowed 
t o  cool t o  25°C. 
was collected by vacuum f i l t r a t i o n .  Recrystallization from methanol yielded 
l i g h t  tan c rys ta l s ;  m.p. 143-144°C. 

A . 2  CHARACTERIZATION OF MODEL COMPOUNCS 

A .  2 a 1 

To th i s  solution was added 147 g (1.6 

After standing overnight, 324 g (89%) of brown crystals  

Di f fe ren t i  a1 Scanni ng Calorimetry (DSC) 

In both cases below, the slope of the DSC curves are  a t t r ibuted t o  
sample vo la t i l i t y .  

A.2.1.1 N-Phenyl Nadimide - The DSC behavior of N-phenyl nadimide 
(Fi gure A-1 ) dis pl ays an endotherm (1  45 -5°C) corresponding t o  the observed 
capi 11 ary me1 t i  ng poi n t .  

A.2.1.2 N-phenyl Oxynadimide - The DSC character is t ics  of this  compound 
(Figure A-2) d i d  not show an endotherm corresponding t o  an observed capil-  
lary melting point of 156 t o  157°C. 
by a plateau from 165-170°C, followed by an endotherm a t  175". T h i s  endo- 
therm corresponds exactly t o  the inf lect ion point observed i n  the TGA trac- 
ing of this material 
lysi  s temperature and i n i  t i  a t i  on of reverse D i  els-A1 der reacti  on of t h i  s 
compound. 
Page 85. 

A.2.2 Ultraviolet  Analysis 

Instead, the curve i s  characterized 

The assignment of this endotherm i s  onset of pyro- 

For further discussion refer t o  the TGA interpretat ion on 

The ul t raviolet  spectrum of oxynadic anhydride (0.06'9 w/w i n  acetoni- 
t r i l e )  shows no absorption i n  the region o f  226-340 mu indicating the 
double bond i n  this compound absorbs below 228 mu. 
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U 1  t r a v i o l e t  s p e c t r a  obta ined  f o r  N-phenyl nadimide and N-phenyl 
oxynadi m i  de 
o f  280 mu and be low,a t t r ibu tab le  t o  phenyl as imide N-phenyl .  

A.2.3 I n f r a r e d  Analysis  

A. 2.3 e 1 
appears  i n  Figure A-3. 
given i n  Table A.I. 

a l s o  determined i n  acetoni  tri le  gave absorp t ion  i n the region 

Oxynadi c Anhydride - The i n f r a r e d  spectrum o f  oxynadi c anhydride 
The assignments o f  pr inc ipa l  abso rp t ion  bands a r e  

rAt3Lt .  A. I 

MODEL COMPOUND INFRARED PRINCIPAL ABSORPTION ASSIGNMENTS 

Compound ' Absorption, cm" 
1855 and 1790 
1020 

731 
1 .  Oxynadic Anhydride 

2880 
J 1700 and 1765 
t 

2 e N-phenyl Nadimide j 1592 
i 1 1495 
1 i 740 

! 1775 and 1710 
1592 

1 1495 
71 0 

3. N-phenyl Oxynadimide 

Band Assi gnmen t 
Endocycl i c anhydride 
Ether as  oxygen i n  
b r idge  
- ci s - o l e f i n  

Endocycl i c methylene 
Endocycl i c i m i  de 
Phenyl stretch 
Phenyl stretch 
- c i s - o l e f i  n 

Endocycl i c imide 
Phenyl stretch 
Phenyl stretch 
c i s -o l e f i l ?  - 

A.2.3.2 N-phenyl Nadimide - The i n f r a r e d  spectrum of N-phenyl nadimide ap- 
pears  i n  Figure A-4. 
given i n  Table  A.I. 

The assignments of p r i n c i p a l  absorp t ion  bands a r e  

A.2,3.3 N-phenyl Oxynadimide - The i n f r a r e d  spectrum o f  &phenyl oxynadi- 
mjde appears i n  Figure A-5. The assignments o f  pr inc ipa l  absorp t ion  bands 
a r e  given i n  Table A.1, 
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The principal differences between the precursor oxynadic anhydride 
Figure A-3 and this compound involve the disappearance o f  anhydride absorp- 
t ion bands i n  the 1790-1855 cm-' and 600-1000 cm"' regions o f  Figure A-5, 
and the appearance of aromatic (as N-phenyl) and imide bands throughout the 
region from 1800-600 crn-l. A l t h o u g h  the spectra of the two N-phenyl model 
compounds i n  Figures A-4 and A-5 are quite s imilar ,  the absorption band a t  
2880 cm-l appearing in Figure A-4, b u t  absent i n  Figure A-5 has been tenta- 
t i  vely assigned t o  nadi c endomethylene and conversely the strong absorption 
band a t  1020-1040 cm-l present i n  Figures A-3 and A-5, b u t  absent i n  
Figure A-4 has been assigned t o  endocyclic oxygen. 

A.2.4 Elemental Analysis 

As a further f i x  on the purity of the synthesized models, elemental 
analyses were determined on samples o f  the monomer oxynadic anhydride 
as well as the model imides N-phenyl nadimide and N-phenyl oxynadimide 
Each of the samples gave acceptable data which are  aiven i n  Table A.11 belob:. 

TABLE A.11 
ELEMENTAL ANALYSIS DATA 

____ 
1 .  Uxynadic Anhydride 

Calculated f o r  C8H604: C ,  58.20; H ,  3.65 
Found: C ,  58.00; H ,  3.70 

2 N-phenyl Nadimi de 
Calculated f o r  C15H13N02: C ,  75.45; H, 5.49; N ,  5.86 

C ,  75.44; H ,  5.51; N ,  6.10 

C ,  69.82; H, 4.60; N, 5.82 
Found: C ,  69.85; H ,  4.62; N ,  6.20 

Found: 
3 e 1-phenyl Oxynadimi de 

Calculated f o r  C14H11N03: 

A.2.5 Nuclear Magnetic Resonance Analysis 

The nuclear magnet1 c resonance (n .mer .) spectra o f  the synthesized 
model compounds substantiated the h i g h  purity of these materials.  The  n.m.r .  
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spectra determi ned i n d e u t e r a t e d  chloroform, employing t e t r ame thy l  s i  1 ane 
(TMS) a s  an i n t e r n a l  s t a n d a r d ,  are d iscussed  i n d i v i d u a l l y  below. 

A.2.5.1 Oxynadic Anhydride - The n.m.r. spectrum of oxynadic anhydride is 
shown i n  F igure  A-6. 
2:2:2 r a t i o  were observed a t  6 . 8 2 ~ ,  4 . 5 9 ~  and 3 . 4 7 ~  and have been ass igned  
t o  anhydride juncture, bridgehead, and olefinic protons r e s p e c t i v e l y .  
These d a t a  and 1 iterature s u b s t a n t i a t i o n s  of assignments appear  i n  
Table A.111. 

In t h i s  spectrum pro ton  absorp t ions  i n  the correct 

A.2.5.2 N-phenyl Oxynadimide - The nemer. spectrum of this model compound 
i s  presented  i n  F igure  A-7. As expected, t h i s  spectrum i s  q u i t e  simi’lar 
t o  t h a t  of oxynadic anhydride (F igu re  A-6). In t h i s  spectrum, i n t e g r a t i o n  
has shown a proton r a t i o  of 5:2:2:2 which  corresponds t o  the correct number 
of p ro tons ,  
absorb  as a m u l t i p l e t  cen tered  a t  2 . 7 0 ~ ,  causes the other pro tons  t o  shift  
s l i g h t l y  u p f i e l d .  Absorptions a t  7 . 0 3 ,  4 . 6 0 ~  and 3 . 5 0 ~  have been ass igned  
t o  anhydride juncture, bridgehead, and o l e f i n i c  protons r e s p e c t i v e l y ,  
based upon assignments e s t a b l i s h e d  for the oxynadic anhydride p recu r so r .  
These d a t a  are summarized i n  Table A.111. 

The s h i e l d i n g  effect of the imide phenyl r i n g ,  whose pro tons  

A.2.5.3 N-phenyl Nadimide - The n.m.r. spectrum of  N-phenyl nadimide is  
shown i n  Figure A-8 .  
quite d i s s i m i l a r  from N-phenyl oxynadimide (F igure  A-7). The spectrum 
i n t e g r a t e s  f o r  f o u r  d i s t i n c t  protons i n  the r a t i o  of 5:2:4:2, i n s t e a d  of 
the expected f ive  d is t inc t  pro tons  i n  a r a t i o  o f  5:2:2:2:2. 
phenyl protons appear  aga in  a s  a multiplet cen te red  a t  2 . 7 0 ~  as i n  
Figure A-7, b u t  the i n f l u e n c e  o f  s h i e l d i n g  by the endocyc l i c  methylene b r idge  
has appa ren t ly  caused an u p f i e l d  sh i f t  o f  the remaining proton peaks. These 
two methylene br idge  pro tons  appear as a complex mu1 t i p l e t  (double-doublet)  
centered a t  8 . 4 0 ~ .  The o l e f i n i c  protons show resonance abso rp t ion  a t  3 . 8 0 ~ .  
The on ly  remaining protons ( 4  by i n t e g r a t i o n )  appear as a peak centered a t  
6 . 6 7 ~ .  These pro tons  have been ass igned  a s  the two bridgehead protons and 
the two imide r i n g  juncture pro tons .  

This model compound g ives  a proton resonance spectrum 

The f i v e  imide 

A.2.6 Thermal and Oxida t ive  S t a b i l i t i e s  

The TGA curve o f  N-phenyl nadimide i n  Figure A-9 (N2).and Figure A-10 
( a i r )  show t h a t  the thermal and o x i d a t i v e  s tab i l i t i es  o f  this model compound 
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are essenti a1 ly i denti cal . 
vol a t i  1 i zed by the time apparent reaction had occurred suff i  ci ent materi a1 
was present t o  show tha t  this compound appears t o  be undergoing the reverse 
Diel s-Alder-addi t ion polymerization i n  the temperature range of 285-350°C 
in b o t h  inert and oxidizing environments. Prior preliminary pyrolysis of 
this material a t  TRW i n  a closed, constant volume system has shown volat i -  
l i t y  t o  be no problem. 

A1 though approximately 90% of the materi a1 had 

I t  was proposed or iginal ly  tha t  the oxynadic specfes appeared t o  
undergo the reverse Diel s-A1 der-addi ti  on polymeri zati  on a t  a temperature 
considerably below tha t  of the nadic group.  Such a species could conse- 
quently serve as an imide prepolymer end cap offering potential lower pro- 
cessing conditions than the nadic group, b u t  s t i l l  yielding a s tab le  poly- 
mer a f t e r  pyrolysis reaction. The TGA curves of N-phenyl oxynadimfde ~ 

Figure A-11 (N2) and Figure A-12 ( a i r )  strongly supported this concept. 

The TGA curves f o r  N-phenyl oxynadimide i n  both N2 and a i r  are 
essential  ly  identi cal a 

had occurred before any apparent polymer was obtained. This proved t o  tje of 
no hindrance, consequently attention i s  called t o  the 175°C area in both 
Figures A-11 and A-12. 
an inf lect ion occurs d u r i n g  apparent compound vola t i l i za t ion .  
ture (175°C) appears t o  be the point a t  which reverse Diels-Alder-addition 
polymerization begins t o  occur. The 175°C temperature i s  identical  t o  the 
temperature of the endotherm observed i n  the DSC analysis shown previously 
in Figure A-2.  The pyrolysis phenomena evidently are complete and a s table  
polymeric resin formed a t  25O-27O0C as evidenced by a plateau i n  b o t h  
curves out t o  ~380-420"C, a t  which point both curves display a plateau 
giving evidence of thermal s t a b i l i t y  t o  temperatures >5OO0C. 

Considerable volati 1 i z i  ng of the compound (80-85%) 

I t  i s  a t  this temperature i n  both N2 and a i r  t h a t  
This tempera- 

A.2.7 Hydrolytic S t a b i l i t i e s  

As expected, oxynadic anhydride is  qui te  hydrolytically lab i le .  
A sample of this material dissolved completely i n  boiling water i n  t h i r t y  
minutes 

However both N-phenyl nadimi de and N-phenyl oxynadimide were 
quite r e s i s t an t  t o  d i s t i l l e d  water hydrolysis e Approximately 95% of both 

-85- 



NASA CR-72633 
11 926-601 3-RO-00 

1 O( 

8( 

61 

PERCENT 
ORlG INAL 
WEIGHT 4, 

2 

TEMPERATURE "C 
Figure A-11 . Thermogram o f  N-phenyl Oxynadimide 

Environment: Nitrogen Scan Rate: 3"C/min 
1 

PERCENT 
0 RIG I NAL 
WEIGHT 

TEMPERATURE "C 
Figure A-12. Thermogram of N-phenyl Oxynadimide 

Environment: A i  r Scan Rate: 3"C/mi n 

-86- 



NASA CR-72633 
11 926-601 3-RO-00 

model compounds remained i n s o l u b l e  a f t e r  a two-hour water  bo i l  e The i n s o l -  
uble  ma te r i a l  was i d e n t i f i e d  as  unchanged o r i g i n a l  imide by i n f r a r e d  analy-  
s is  by comparison of s p e c t r a  w i t h  those  prev ious ly  determined f o r  the 
o r i g i n a l  model compounds. 
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APPENDIX B 
MODEL COMPOUND PYROLYSIS GAS CALCULATIONS 

The pyrolysis apparatus and pyrolysis runs described i n  Section 2.2 
employed the following theory and equations t o  calculate masses of gas 
evolved dur i  ng experimentation a Two methods were used dependi ng on whether 
nitrogen or  vacuum environments were employed. 

In experiments designed t o  determine the e f f e c t  of nitrogen pressure 
on the pyrolysis of the model compounds9 the system was f i l l e d  w i t h  dry 
nitrogen gas t o  a pressure of 760 torr a f t e r  pr ior  evacuation t o  1 t o r r  
as above. 
as described above f o r  the case of a vacuum as the environment a t  the onset 
of  pyrolysi s e 

The pyrolysis was then conducted following the identical  steps 

In the case when a vacuum was used as the i n i t i a l  pyrolysis environ- 
ment, the gas formed d u r i n g  the pyrolysis was isolated and analyzed. 
pyrolysis of N-phenyl nadimide ( I )  the principal gaseous product was cyclo- 
pentadiene ( V )  and on pyrolysis of N-phenyl oxynadimide (11) the principal 
gaseous product was essent ia l ly  a l l  furane (VI) e Because of these f i n d i n g s  
i t  was possible t o  compute the mass of the gaseous products assuming the 
products behaved as ideal gases. 
are  a t  d i f fe ren t  temperatures the to t a l  amount of material i s  calculated 
from the ideal gas equation as follows: 

On 

Because sections of the pyrolysis system 

nt  = n l  + n2  + n3 ( B - 1 )  

where n t  = to ta l  moles of gas 
n l  = moles of gas maintained i n  the pyrolysis section 

n2 = moles of gas maintained i n  the cold t rap  section 

n3 = moles of gas i n  the system volume (V,) maintained 

volume ( W , )  a t  the pyrolysis temperature (T1)  

volume (V,) a t  the i t s  temperature ( T 2 )  

a t  room temperature (T3)  
and 

P V1 + - +  v2 - )  V3 therefore n t  = E (T 
T2 T3 
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where P = pressure i n  the system and 
R = the ideal gas constant = 82.01 ml-atm/mole-"K 

The analysis of the pyrolysis gas (Appendix D ,  Page 119) showed t h a t  small 
amounts of methyl alcohol were present. Consequently, using the molecular 
weight of ( V )  t o  calculate  i t s  mass from the pressure i n  the system is  not 
s t r i c t l y  correct ,  however, these quant i t ies  were in general qui te  small and 
when calculated rigorously correspond t o  a methyl alcohol weight of less  
t h a n  10 mg (or  an equivalent amount o f  l ess  t h a n  0.05% methyl alcohol in  the 
s ta r t ing  model compound). 
a t t r ibuted t o  residual methanol remaining from recrys ta l l iza t ion  o f  the 
model compound. 

Consequently, i t s  presence i n  the gas phase i s  
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APPENDIX C 
PYROLYSIS RESIDUE CHARACTERIZATION 

The so l id  residues ar is ing from the pyrolysis of N-phenyl nadimide ( I )  
and N-phenyl oxynadimide (11) as described i n  Section 2.2 were analyzed ex- 
tensi vely by several chemical and instrumental methods * The interpretat ion 
of these characteri zat i  on data culmi nated i n  the pyrolytic polymeri zat i  on 
mechanism described i n  Section 2.4. 
sol id  residues are  described and tabu1 ated bel ow a 

All pertinent data obtained from the 

C.  1 ELEMENTAL A.NALYS1 S 

The elemental analysis of the residues obtained from the pyrolysis of 
( I )  are  listed i n  Table C.I. The carbon content, and t o  a lesser extent, the 

TABLE C.1 

ELEMENTAL ANALYSIS OF RESIDUE OBTAINED ON PYROLYSIS OF N-PHENYL NADIMIDE 

Samp 1 e 
No. 
20 

21 

42 

43 

59 

32 

44 

Pyrolysis 
Conditions %C , % N  
I-350-2-V 1 73.71 ' 6.01 

i 
i 

I-350-3-V ! 73.95 

I-350-2-N ' 1 74.54 73.05 

1-300-3- V 

I-300-2-V 1 74.65 

I-300-2-N 74.59 

I-275-2-V 1 74.46 

I 
I 

I 

6.08 

5.71 

6.22 

5.58 

5 -75 

6.37 

Carbon 
Method 
o.66 

0.7, 

0.82 

O.S4 

0.85 

0.84 

0.82 

Nitrogen 
Method 

0.g1 

1 "O0 

1 " I 8  

0.87 

0.70 

1 "07 

o.71 

nitrogen content, can be used t o  estimate the r e l a t ive  r a t i o  o f  the analyti-  
cal concentration (amount i n  a l l  forms) of cyclopentadiene ( V )  remaining i n  
the residue obtained on pyrolysis o f  N-phenyl nadimide ( I ) .  This analysis 
assumes t h a t  ( I )  consists of N-phenyl maleimide (111) and ( V ) .  The carbon 
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and nitrogen contents of ( I )  are 75.29% and 5.85% and of (111) are 69,34% 
and 8.09%, respectively. 
( n r / n r )  i s  calculated from the carbon fractional ( C )  contents as follows: 

The molar r a t io  of ( V )  t o  (111) maleimide 
c m  

2 e 884 C-2 a 000 - n:/nF - 1-1.100 c 
Calculation of t h i s  same r a t i o  from the nitrogen fractional content ( N )  i s  
accomplished w i t h  the aid of Equation C-2. 

n",/nF = - o e 2 1 2  - 2.62 N 

As can be seen from Table C.1 the ( V )  content in  the pyrolysis products of 
( I )  varies from 0.54 t o  0.85 when calculated on the basis of  carbon con- 
tent (Equation C - 1 )  and 0.71 t o  1.18 when calculated on the basis of ni t ro-  
gen content (Equation C - 2 ) .  
outside the residue as a l iquid o r  gas (Table I Page 7 ) .  The presence 
of ( V )  in the residue as discussed i n  the sections below i s  fundamental t o  
the proposed polymerization mechani sm g i v e n  in Section 2.4. 

These data are  consistent w i t h  the ( V )  isolated 

Table C.11 l i s t s  the elemental analysis of the residues obtained from 

TABLE C.11 
ELEMENTAL ANALYSIS OF RESIDUE OBTAINED ON PYROLYSIS 

OF N-PHENYL OXYNADIMIDE AND N-PHENYL MALEIMIDE 

Model N-Phenyl 
No. Imide Type I c (%)  

Sample 

28 . 11-250-2-V i 69.38 
29 11-250-1-V 69 38 1 69.33 30 1 11-250-2-N 

1 
i 

22 1 11-350-2-V 1 69.94 
70.00 
71.18 I 

i 
47 1 11-350-3-V 
64 111-350-2-V 

N (%) 
7.59 
7.66 
7.28 
8.07 
7 "49 
7.32 

pyrolysis of N-phenyl oxynadimide (11) and N-phenyl maleimide (111) 
analysis data for products 28-30 from (11) strongly suggest t ha t  furane 
(VI) i s  n o t  present i n  the pyrolysis residues. 
the theoretical  percent (VI) available f o r  reaction i s  28.2% and f o r  a 
20 g sample this  amounts t o  a quantity o f  5.64 g .  

The 

Based on the model compound, 

In the two experiments 
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where acceptable recovery was achieved, Samples 47 (II-350-3-V) and 68 
(II-350-2-V), the to t a l  matter i so la ted  as l iqu id  and gas ( W t  + W ) was 
5.71 and 5.98 g ,  respect ively,  which agrees reasonably well with the 
theoreti  cal amount of (VI).  Subsequent analysis of these products (see 
Section C.4 and C.5) confirm t h a t  the furane vola t i l i zed  away from the 
pyrolysis tube and was n o t  available f o r  reaction d u r i n g  pyrolysis.  The 
s imi la r i ty  of N-phenyl oxynadimide (11) polymer t o  N-phenyl maleimide (111) 
polymer i s  discussed in  Sections C.4 and C.5. 

C.2 MOLECULAR WEIGHT DETERMINATION 

9 

C.2.1 Vapor Phase Osmometry (VPO) 

The experimental resu l t s  of number average (mn) molecular weight deter-  
mination for several key pyrolyses runs are summarized i n  Table C.111. These 

TABLE C.111 
MOLECULAR WEIGHT OF PYROLYSIS PRODUCTS 

asample not completely soluble i n  DMF 
data were obtained u s i n g  standard VPO methodology and dimethyl formamide 
(DMF) solvent and a t  a sample temperature o f  100°C, 
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These data show cer ta in  trends as t o  the degree of polymerization ver- 
sus pyrolysis variables employed. The variations of temperature time, and 
environment a f f ec t  the En of products from ( I ) .  For Samples 32 and 43 i t  
appears t ha t  conditions o f  300°C f o r  two hours under ni t rogen (Sample 32) 
gives polymer of En approximately equivalent t o  t ha t  obtained under condi- 
t ions of 300°C fo r  three hours i n  vacuum. This f a c t  was confirmed by gel 
permeation chromatographic analysis as discussed below. 
of pyrolysis a t  3 O O O C  under vacuum on apparent mn of polymeric product i s  
shown by comparing Sample 43, pyrolyzed for three hours,  w i t h  Samples 59 
and 66. 

The e f f ec t  of time 

The lower En fo r  Sample 44 was expected in l i g h t  of the n.m.r. spec- 
t r u m  of this compound which showed i t  t o  contain remnants of both model 
compound and polymer as described i n  Section C.5. 
showed the product pyrolyzed a t  35OOC f o r  two hours under vacuum t o  have a 
lower degree o f  polymerization than a l l  samples pyrolyzed a t  300°C. This 
strongly suggests tha t  temperatures >3OO0C were indeed unnecessary t o  de- 
f ine a superior polymeric product, such as those described i n  Section 3 .  

The mn of Sample 67 

. 
Samples 28, 29, 30 and 47 are products from the pyrolysis of N-phenyl 

oxynadimide (11) and 64 i s  the product obtained from N-phenyl maleimide 
(111). The conclusions drawn above fo r  the effect of time and temperature 
on the En of the pyrolysis residues of ( I )  are valid f o r  the resul ts  ob- 
served f o r  pyrolysis of (11). Sample 29 was heated f o r  only one hour a t  
250°C under vacuum whereas both Samples 28 and 30 were heated for two 
hours a t  250°C under vacuum and nitrogen, respectively. Sample 47 pyro- 
lyzed a t  35OOC resulted i n  a lower ?sin. Only Sample 29 of this  se r ies  was 
t ractable ,  suggesting onset of crosslinking i n  Samples 28, 30 and 47. Be- 
cause of the par t ia l  insolubi l i ty  of Samples 28, 30 and 47 ,  no d i rec t  com- 
parison can be made between these materials. 

Sample 64, the product isolated from pyrolysis of  (111) a lso was 
pa r t i a l ly  intractable .  The s imi la r i ty  of this product t o  those obtained 
f o r  products from (11) i s  discussed i n  Sections C.4 and C.5. 
pyrolysis of ( I  11) was r u n  under only one set  of experimental condi Lions 
no further conclusions can be made. 

Because the 
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C. 2 2 Gel Permeation Chromatography (GPC) 

Several pyrolysis products obtained dur ing  this study were analyzed by 
GPC t o  provide an indication of the molecillar weight d i s t r ibu t ion  formed 
dur ing  the pyrolysis. A typical curve is g iven  i n  Figure C-1. 

The gel permeation chromatographic r e su l t s  can be summarized by the 
fol  1 owi ng: 

Pyrolyzing ( I )  a t  300°C for two hours i n  a nitrogen 
envi ronmeEt resu l t s  i n  s1 polymer havjng approximately 
the same Mn and %‘as t h a t  obtained from pyrolyzing 
i t  f o r  three hours under a vacuum environment, 

The average number molecular weight obtained from py- 
rolysis  of (11) is  approximately twice t h a t  obtained 
from pyrolysis of ( I )  and (111). 

The molecular weight dis t r ibut ion i s  much broader i n  
the pyrolysis products obtained from (11) and (111). 

The close agreement between the r a t io s  of number aver- 
age molecular weights infers va l id i ty  t o  the absolute 
numbers obtained from VPO. 

The products obtained on pyrolysis of ( I )  have two 
d i s t i n c t  molecular weight ranges, a re la t ive ly  small 
h i g h  molecular weight  portion and large low molecular 
wei g h t por t i  on, 

The products obtained from pyrolysis of (11) (11-350-2-V) 
g ive  three h i g h  molecular weight f ract ions and one low 
molecular weight f rac t ion ,  

C .3 UNSATURATION CONTENT 

The unsaturation content of the pyrolysis residues was determined by 
broml’ne absorption and semiquanti t a t i ve ly  confirmed by infrared analysis e 
The r e su l t s  of these studies are tabulated i n  Table C.VI. 
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TABLE C.IV 
SUMMARY OF UNSATURATION ANALYSIS RESULTS 

T I 
I 

A / c , ~  - A/c[Br] Bromine t [Brlmnla 
2 Sample . Pyrolysis Absorption, I 

No. Condi ti ons meq/g I eq/mol mg -’ 10 g/meq-mg 
21 I-350-3-V 
67 I I -350-2-V 
42 I-350-2-N 
43 I-300-3-V 
59 I-300-2-V 
66 I-300-2-V 
32 ! I-300-2-N 
44 I -275-4-V 

28 / 11-250-2-V 

1 

30 I 11-250-2-N 

0.39 
1.60 
0.87 
0.71 

? 0.99 
1.51 1 

1 0.56 
t 0.76 

0.19 

: 

i 1.34 

f 

B 

---- 
0.98 
0.51 
0.86 
0.76 
1.14 
1.55 
0.32 
1.06 
0.36 

0.042 , 10.8 
0.129 ( 8.0 
0.066 
0.066 
0.061 
0.058 
0.108 
0.060 
---- 
---- 

47 11-350-3-V 1 0.43 I 0.42 0.047 

7.6 
9.3 
6.2 
3.9 
8.0 

10.7 
---- 
-e-- 

11 .o 
64 111-350-2-V ; 0.57 ’ 0.47 0.071 ~ 12.5 

’Bromi ne content x number average mol ecul a r  wei gh t 

bAbsorbance a t  1630 cm-’/weight o f  pyrolysis residue i n  KBr  p e l l e t  

definite appearance of 1630 cm-l o l e f i n i c  unsaturation band ascribed by 
Bellamy (Reference 7) t o  cis-unsaturation i n  a five-membered r i n g .  
experimental l y  es tab1 is  hed t h a t  ( I )  does not absorb bromine, presumably be- 
cause of s t e r i c  interference by the methylene br idge.  
present i n  the spectrum of Sample 32 i n  Figure C-2 (representative f o r  a l l  

pyrolytic residues of ( I ) )  i s  not  present i n  the spectrum o f  model compound 
( I )  given i n  Figure C-3. 

In each o f  the samples o f  pyrolyzed N-phenyl nadimide ( I )  there was 

I t  was 

The 1630 cm-’ band 

Bromine absorption was found t o  range between 0.39 - 1.60 meq/g f o r  
the residues corresponding t o  one t i t r a t a b l e  double bond per .~600-2500 
molecular weight. The model compound ( I )  has an unsaturation content o f  
4.18 meq/g which means the polymeric product has only 40% t i t r a t a b l e  double 
bond character o f  t h a t  potent ia l ly  avai lable .  The presence of no 
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discernable o l e f in i c  protons was established by nuclear magnetic resonance 
( n e m e r * )  analysis as discussed i n  C.5. 

An estimation of the number o f  alkene groups per moleculz was obtained 
by multiplying the bromine content [Br] by Kn (See Table C.111). 
data are  a lso l i s t e d  in Table C.VI and show t h a t  the pyrolysis products of 
( I )  have a range of 0.5 t o  1.5 eq/mol. The results of Sample 44 are lower 
b u t  t h i s  i s  explained by the presence of an unreacted s t a r t i ng  material .  
The products from pyrolysis of (11) and (111) generally have fewer alkene 
groups per mole.. 

These 

A semiquanti t a t i ve  estimation of the r e l a t ive  double content from the 
infrared s tudies  was calculated by d i v i d i n g  the absorbance a t  1630 cm-l by 
the weight of the sample i n  the KBr p e l l e t ,  A/c (d i rec t ly  re la ted t o  the 
concentration i n  the optical  path) .  These data are a lso presented i n  
Table C.VI together w i t h  the r a t i o  of A/c to  bromine absorption content. 
Although there i s  some s c a t t e r  i n  the data ,  the A/c[Br] r a t i o  shows good 
correl a t i  on between i nfrared and bromi ne absorption studies. 
i s  a t t r ibu ted  t o  e r rors  attendant w i t h  obtai n i n g  1 ow absorbance values . 

The s c a t t e r  

C.4 INFRARED SPECTROSCOPIC ANALYSIS 

C.4.1 N-phenyl Nadimide 

The infrared analysis of a l l  pyrolysis products from N-phenyl nadimide 
( I )  gives strong indication f o r  the presence o f  a considerable number of 
non-phenyl protons ?) namely methi nyl and methylene hydrogens. The presence 
of these charac te r i s t ic  carbon-hydrogen vibrations can be seen by inspec- 
t ion of the 2800-3000 cmsl region of Figure C-3. Infrared absorption i n  
this region i s  a t t r ibu ted  t o  carbon-hydrogen s t re tching of methylene and 

methinyl linkages (Reference 8) .  The infrared spectrum of 3,5-dimethyl 
cyclopentene gives strong absorption i n  this region as reported by Aso and 
coworkers (Reference 9)  a 

The s t rong  carbon-hydrogen s t re tch  abosrption bands present i n  the 
spectra of pyrolysis products from ( I )  a re  great ly  diminished i n  the 
spectra of polymeric products from M-phenyl oxynadimide (11) as discussed 
bel ow (I 
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C.4.2 N-phenyl Oxynadimide 

Strong physical evidence t h a t  N-phenyl oxynadimide (11) pyrolysis re- 
sidues contained l i t t l e  o r  no furane as par t  of the polymer s t ructure  
prompted investigation of  the resi due produced from the pyrolysis of N-  
phenyl maleimide (111) 
was recrystal  1 i zed and subjected t o  pyrolysi s condi ti  ons identical  t o  those 
employed f o r  the other model imides. The pyrolysis residue (Sample 64) ob- 
t a i  ned was subjected t o  a screeni ng characterization f o r  comparison w i t h  
data obtained for an N-phenyl oxynadimide (11) residue obtained under ident i -  
cal experiment pyrolysis conditions ( 2  hours a t  350°C under vacuum) 

A commercial sample of N-phenyl maleimide (111) 

The identical  s t ructural  nature o f  the two products i s  vividly shown by 
referr ing t o  the infrared spectrum of the N-phenyl oxyna.dimide (11) residue 
i n  Figure C-4 and ccmparing i t  with the spectrum of the N-phenyl nadimide 
residue in Figure C-5. 
f ine s t ructure .  A l l  infrared spectra of products from (11) were essent ia l ly  
identical  and gave no indication of the presence of furane (VI). 

The two spectra are identical  down t o  the smallest 

C.5 NUCLEAR MAGNETIC RESONANCE ANALYSIS (n.m.r.) 

The n .m.r .  spectra of the N-phenyl nadimide ( I )  pyrolyses products has 
given i n s i g h t  in to  the probable structure of the polymer backbone. 
f o r  these products as well as Principal proton absorption peaks f o r  N-phenyl 
oxynadimide (11) products are given in  Table C.VII 

Data 

Listed i n  Table C.VII are  def in i te ly  discernible proton absorption 
peaks along with tentat ive peak assignments and the r a t i o  of non-phenyl 
(cyclopentadi ene ( V )  ) and/or maleic t o  phenyl (as N-phenyl ) protons. 

The n.m.r. spectra of a l l  polymeric products from ( I )  contained phenyl 
proton absorption a t  approximately 2 . 6 0 ~  and a resolved peak a t  approxi- 
mately 7 . 3 0 ~  charac te r i s t ic  of the presence of methinyl protons. Except 
f o r  Sample 44,l(discussed on Page 114), no o le f in ic  protons were present such 
as those a t  3.80~ (D)  appearing i n  the spectrum of model compound ( I )  in  
Figure C-6, The best  resolution of  bands i n  the region of 6 .0-9 .0~  was 
obtained f o r  Sample 21 whose spectrum appears in  Figure C-7. The three 
non-phenyl proton peaks i n  Figure C-7 a t  7 . 4 6 ~ ~  7 . 2 2 ~ ~  and 6 . 6 5 ~  are  assigned 
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TABLE C.V 
NUCLEAR MAGNETIC RESONANCE ABSORPTION 

DATA FOR TASK I PYROLYSIS PRODUCTS 

20 1 2.70 Phenyl 
I 7.32 Non - p he ny 1 

43 

42 

59 

44 

21 

37 

28 

29 

30 

22 

2.68 Phenyl 
7.30 Non-phenyl 
2.61 I Phenyl 
7.22 
2.57 
7.25 
2.55 
7.28 
8.50 
6.68 
3.68 
2.61 
7.22 
7.46 
6.65 
2.65 
3.30 
2.65 
3.26 
2.60 
3.02 
2 -68 
3.12 
2.63 
2.77 
3.20 

Non-phenyl 
Phenyl 
Non-p heny 1 
Phenyl 
Non-phenyl 
Bri dge 
Bridgehead 
Olefin 
Phenyl 
Methinyl (IV) 
Methylene (IV) 
Bri dgehead ( I ) 
Phenyl 
Olefi n i  c 
Phenyl 
01 efi n i  c 
Phenyl 
Olefi n i  c 
Phenyl 
Olef inic  
Phenyl 
Phenyl 
Olefi n i  c 

9.9:8.3 = 1.2:l 

10.7:7.4 = 1 . 4 ~ 1  

10.1 ~ 8 . 2  = 1.2:l 

10.5:9.8 = 1.1:l 

43:37 = 1.2:l 

12:lO = 1.2:l 

2.5:7 = 1:2.8 

3.3:lO = 1:3 

3.3:lO = 1:3 

2.8:9.2 = 1 ~ 3 . 3  

2.6:10.3 = 1:4 
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t o  1 )  methylene in  N-phenyl maleimide, 2 )  methinyl i n  N-phenyl maleimide, 
and 3)  bridgehead and r i n g  juncture protons, respectively.  These assign- 
ments were made w i t h  the a id  of the model imide ( I )  spectrum (Figure C-7 
shows t h a t  bridgehead methinyl and r i n g  juncture protons absorb a t  6 . 6 5 ) .  
The o ther  assignments were made w i t h  the aid of N-phenyl-2-methyl -succini - 
mide (IV) whose spectrum appears i n  Figure C-8. This compound simulates 
saturated N-phenyl maleimide groups on the end of a polymer chain,  where 
the methyl group represents a remaining polymer chain. The methinyl pro- 
ton Y i n  (IV) appears as a complex mult iplet  centered a t  approximately 7 . 2 0 ~  
i n  Figure C-8. 
a t  approximately 7 . 6 0 ~ .  
peaks appearing f o r  Sample 21 i n  Figure C-7. I t  i s  believed the broad unre- 
solved areas from 6.3 - 9 . 0 ~  include possible combinations of protons l is ted 
i n  the summary i n  Table C.VII1, including bridge protons as A i n  Figure C-6. 

The two methylene protons Z appear as a mult iplet  centered 
These absorptions r e l a t e  t o  the 7 . 2 2 ~  and 7 . 4 6 ~  

TABLE C,VI 
SUMMARY OF OTHER PROTONS POSSIBLE IN MODEL POLYMERS 

. 
Proton Absorption 

Co mpou nd Peaks ( T )  Source 
N-phenyl Nadimide ( I )  8.40 (b r idge  methylene A )  Reference 10 
Cyclopentene (VII) i 7.72 (methylene 2)  Reference 10 

Cyclopentane (VIII)  8.49 (methylene) Reference 11 
Norbornane (IX) t 7.81 (methylene) Reference 12 

' 8,lO (methylene 3)  

The spectra  obta ined  f o r  a l l  N-phenyl oxynadimide (11) pyrolyses pro- 
ducts bear no resemblance t o  those of ( I )  and show only one pr inc ip le  ab- 
sorption band other  than phenyl a t  approximately 3.20~. A representat ive 
spectrum, t h a t  of Sample 28, appears i n  Figure C-9. 
s imi la r  t o  t h a t  obtained f o r  model N-phenyl maleimide (111) included as 
Figure C-10. T h i s  strongly suggests the polymeric products obtained under- 
go rapid thermal dehydrogenation t o  give a p a r t i a l l y  unsaturated polymer, 
or pa r t i a l  reversion back t o  model compound on heating, accounting f o r  the 
absence of any bands f o r  methylene o r  methinyl protons present f o r  (IW) i n  
Figure C-8 which should simulate N-phenyl maleimide polymer. 

This spectrum is very 
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Nuclear magnetic resonance ( n . m e r . )  spectra of Sample 44 i n  Figure 
C-11 graphically shows the e f f ec t  of temperature on the nature of the pyro- 
l y t i c  polymerization product. Table A.111 sumarizes  n.m.r .  characteriza- 
t ion data fo r  the N-phenyl nadimide model compound and tha t  f o r  pyrolysis 
Sample 44 i s  given i n  Table C.VI1. 

The pyrolysis product From Sample 44 (Figure C-11) def in i te ly  gives 
evidence of endocyclic methylene (nadic) proton absorption (A) a t  8 . 4 0 ~  as 
well as proton absorptions f o r  bridgehead and r i n g  juncture hydrogens ( B  
and C )  a t  6 . 6 7 ~  and o l e f in i c  protons ( D )  a t  3 . 8 0 ~  when compared w i t h  those 
fo r  the model compound i n  Figure A-8. Sample 44 also def in i te ly  contains 
polymer proton absorption ( F )  a t  7 . 2 5 ~  which i s  absent i n  Figure A-8, b u t  
def in i te ly  present i n  a l l  other pyrolysis products from ( I ) .  All spectra 
contain the expected phenyl proton peak ( E )  a t  2 . 7 0 ~ .  

These data have proven very valuable f o r  providing direct ion towards 
nadic capped polymer synthesis s tudies  discussed i n  Section 3 and accom- 
plished a major objective of the model compound s tudies ,  namely, t o  appro- 
ximate minimum processing temperature needed t o  assure complete polymeri- 
zation. The ident i f icat ion of allowable processing temperatures t o  1 i e  
above 275°C (527°F) coupled w i t h  recent TRW IR&D company supported s tudies  
whi'ch show tha t  s imi la r  polyimide prepolymers can be processed a t  550°F 
(288°C) allowed polymer s tudies  t o  concentrate on >55OoF processing tempera- 
tu res ,  which defined su f f i c i en t  prepolymer t o  cured polymer conversion. 

C.6 THERMOGRAVIMETRIC ANALYSIS 

The thermo-oxidative s t a b i l i t i e s  of a1 1 pyrolyses samples as deter-  
mined i n  nitrogen and air a re  given i n  Table C.IX. These resu l t s  were ob- 
tained by TGA u s i n g  an Aminco Thermograv on 0.1 g samples, scan r a t e  of 
3"C/min and a gas flow ra t e  of 100 ml/min. The resin weight loss is  given 
up t o  500°C, a l though this temperature is  cer ta inly above the required use 
temperature fo r  A-type polyimide polymers under investigation i n  this 
program, 
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TABLE C.VII 
THERMAL A N D  OXIDATIVE S T A B I L I T Y ~  

OF PYROLYSIS PRODUCTS 

Sample 
No 
20 
21 
67 
42 
43 
59 
66 
32 
44 
29 
28 
65 
30 
68 
22 
47 
64 

Pyrolysis ! % Weight Loss i n  Nitrogen 1 % Weight Loss in Air 
Conditions j 200'"C 300°C 400°C 500°C : 2 O O 0 C  300°C 400°C 500°C 

I-350-2-V 
I-350-3-V 1 

I-350-2-V 
I-350-2-N 
I -300-3-V 
1-300- 2-V 
I-300-2-V 
I -300-2-N 
I-275-2-V 

11-250-1-V 
I I-250-2-V 
11-250-2-V 
11-250-2-N 
11-350-2-V 
11-350-2-V 
11-350-3-V 

[ I I -350-2-V 

4 5 22 73 ' 0 2 26 53 
0 8 30 64 I 0 8 22 50 
2 10 40 73 I 3 8 35 68 

10 .24 42 100 
0 3 4 70 
4 4 17 72 
6 10 25 85 
0 1 32 72 
0 14 30 90 

30 30 58 75 
8 22 35 60 
3 7 40 70 
2 11 26 55 
7 15 40 70 
3 7 28 46 
7 14 28 57 
4 9 27 53 5 14 

-- 
14 
38 
20 
10 
-- 
57 
50 
34 
-- 
-- 
23 
32 
30 

-- 
63 
70 
72 
53 
-- 
70 
68 
45 
-- 
-- 
40 
47 
46 

aThermogravimetric analysis :  scan r a t e  3"C/min; gas flow ra t e  100 m l / m i n  

A basic assumption was made t h a t  model compounds showing superior 
weight re tent ion,  par t icu lar ly  i n  a i r ,  up t o  300°C (572°F) would ident i fy  
the par t icu lar  end cap (nadic o r  oxynadic) f o r  a l l  other program a c t i v i -  
t i e s ,  s ince this  temperature range goes f a r  beyond (c .a . ,  122°F)  the mini- 
mum composite use temperature of 450°F desired i n  this program. 
polymeric products from N-phenyl nadimide ( I )  consis tent ly  showed better 
weight re tent ion u p  t o  300°C i n  b o t h  nitrogen and a i r  as shown i n  
Table C.IX, than the products from N-phenyl oxynadimide (11). This f a c t ,  
along w i t h  the almost quant i ta t ive evolution o f  furane d u r i n g  pyrolysis of 

The 
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(11) which strongly suggested d i f f i c u l t  processing problems led TRW Systems 
to  recommend nadic as the end cap of choice over oxynadic. 

The greater resin weight loss i n  nitrogen than i n  a i r  f o r  the pyrolytic 
polymer products during TGA analysis as shown i n  Table C.IX was a consistent 
occurrence. An expl anati on f o r  this phenomenon considers the hydrocarbon 
unsaturated linkage i n  the linear polymer as a cyclopentene backbone compo- 
nent as shown i n  Section 2. I t  i s  believed tha t  the carbon-hydrogen bonds 
i n  the cyclopentene portion of the l inear  polymer thermally cleve a t  temp- 
eratures ~300°C resul t ing i n  fragmentation of the polymer and subsequent 
decomposition. 
i s  par t ia l ly  a l leviated by formation of oxygen adducts such as peroxides 
wh i ch e f f ec t  i n si t u  addi ti  on polymeri zati  on through the unsaturati on g i  vi  ng 
a polymer species t h a t  i s  r e s i s t an t  t o  thermal clevage unt i l  a higher temp- 
erature  (c .a . ,  - 400°C) i s  reached. Due to  the non-linear (c .a . ,  thermoset) 
nature of cured polyimide polymers, t h i s  phenomenon was no t  observed i n  the 
polymer studies discussed i n  Section 3 .  

In a i r ,  i t  i s  believed this thermal carbon-hydrogen clevage 

Indication of a fundamental difference i n  the polymer backbone s t ruc-  
ture between products from ' ( I )  versus (11) can be seen f rom the percent 
ncight loss i n  nitrogen a t  5OOOC. The polymer from (11) consistently 
showed a higher char yield ( ~ 5 0 % )  a t  t h i s  temperature, whereas the pro- 
ducts from ( I )  gave a best char yield of only 36% and averaged ~ 2 0 % .  
indicates the presence i n  the polymer backbone of N-phenyl nadimide ( I )  
products 
"ormation of more thermally s tab le  crosslinked or  highly conjugated species 
apparently present i n  products from N-phenyl oxynadimide (11) 

This 

carbon-carbon 1 inkages w h i  ch degrade o r  cleave a t  5OO0C, versus 

C.7 SAPONIFICATION EXPERIMENTS 

Saponification of the pyrolyses products from N-phenyl nadimide ( I )  
and H-phenyl oxynadimide (11) were conducted t o  aid i n  the s t ructural  i n -  
terpretat ion of the polymer backbone. This study, however, gave no useful 
quantitative information on the to ta l  number of imide linkages per  s e ,  b u t  
did y i e l d  some important data on the s t ructural  make-up of the polymer 
molecular weight d i s t r ibu t ion .  
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Sample 42 was hydrolyzed (saponi f i  ed) w i t h  0.1 - N sodi um hydroxi de f o r  
19 hours a t  reflux temperatures which resulted i n  a brown solution contain- 
i n g  some insoluble so l id  material * The alkal ine solution separated from 
the so l id  residue by f i l t r a t i o n .  The alkal ine material was then t i t r a t e d  
w i t h  0.095N - hydrochloric acid i n  the presence of phenolphthalein as  an i n -  
d icator .  
288 g/eq. 

The equivalent weight of t h i s  material was calculated t o  be 

The a1 kal i ne i nsol ubl  e p o r t i  on of the saponi f i ca t i  on m i  xture was 
found t o  be soluble i n  acetone and gave the infrared spectrum shown i n  
Figure C-12. This spectrum was ident ical  t o  t h a t  of the original pyrolysis 
residue shown i n  Figure C-13. These data strongly suggest t h a t  the 0.1N - 
base insoluble portion was a high molecular weight homo-polymer fract ion 
shown t o  be present i n  gel permeation chromatography experiments discussed 
i n  C.2.2. 

The infrared spectrum of the alkal ine soluble material appears i n  
Figure C-34. 
a re  present i n  the 1840-1600 cm-l region of the spectrum which i n  e f f e c t  
means the 288 g/eq t i t r a t i o n  value could n o t  be ascribed d i r ec t ly  t o  a single 
s t ructural  ass i gnmen t . 

ThZs spectrum shows tha t  both imide and amide carbonyl groups 

A1 though this saponification experiment and subsequent ones employing 
up t o  1 . O N  - sodium hydroxide gave equivalent weight resu l t s  s imi la r  t o  the 
experiment described several in te res t ing  experimental f ac t s  were estab- 
l ished as appears below: 

The pyrolysis products from N-phenyl nadimide ( I )  a re  
highly r e s i s t a n t  t o  complete saponification. 

The saponification experiment (by infrared analysis)  i n -  
dicates the presence of a small amount (%lo??) of h i g h  
molecular weight homo-polymer i n agreement wi t h  GPC data 

Both the or iginal  polymer and saponi f i  cation r e s i s t a n t  
h i g h  molecular weight portion are  acetone and DMF solu- 
ble supporting presence of only polar linked polymer 
segments e 

All infrared data (Figures C-12 and C-14) show strong car- 
bon hydrogen s t re tching bands a t  2850-3000 cm-1 i ndi ca t i  ng 
prssence of considerable methinyl and methylene hydrogens 
as pa r t  o f  a s t ab le  polymer backbone 
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APPENDIX D 
CHARACTERIZATION OF EVOLVED PYROLYSIS PRODUCTS 

The gaseous products ar is ing from pyrolysis of N-phenyl nadimide ( I )  

The principle gaseous product from the pyro- 
and N-phenyl oxynadimide (11) were characterized by mass spectrometric ana- 
lys i s  in several instances. 
lys i s  of  ( I )  was cyclopentadiene ( W )  and tha t  from (11) was furane (VI). 
These dienes as gases were expected t o  evolve due t o  the postulated reverse 
Diels-Alder reaction o f  the model compounds. The data presented here are 
frequently related back t o  Sections 2 . 2  and 2.3 and Appendix B for  c l a r i t y  
and conti nui t y  , parti  cul ar ly  for  mass bal ance cal cul a t i  ons . 
3.1 CHARACTERIZATION OF THE PYROLYSIS GASES 

The gaseous products of  several Task I pyrolyses experiments were 
analyzed by mass spectrometry. The resu l t s  of the mass spectrometric ana- 
lyses are delineated in Table D.I. 

TABLE D.1 
MASS SPECTROMETRY DATA 

Sample Pyrolysis 
No. Condi ti ons , Product A n t i  ci pated 
43 1-300-3-V 

44 1-275-2-V 

59 1-300-2-V 

22 11-350-2*V 

28 11-250-2-V 

29 11-250-1 - V  

Cycl opentadiene 

Cycl opentadiene 

Cycl oaentadiene 

Furane 

Furane 

Furane 

Principl;. 
Products Found ( X  v / v )  

Cyclopentadiene 74.1 
Nitrogen 4.5 
Cyclopentadiene 75.2 
Nitrogen 5.3 
Cycl opentadi ene 12 a 8 
Met h ano 1 2.9 
Nitrogen 69.1 
Furane 82.5 
Nitrogen 7.2 
Furane 98.4 
Nitrogen 1.5 
Furane 96.4 
Nitrogen 3.2 
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The results of samples pyrolyzed from N-phenyl nadimide ( I )  show t h a t  
the principal product obtained was cyclopentadiene ( V )  e These samples (43, 
44 and 59) were calculated (Table I ,  Page 7; Equation D-4) t o  give only 
~ 0 . 1  g of gas o r  ~ 0 . 5 %  to t a l  quantity of sample pyrolyzed. The h i g h  ni t ro-  
gen content of Sample 59 suggests t h a t  the sample b u l b  (F-Figure 1 s Page 5) 
was n o t  en t i re ly  evacuated a f t e r  nitrogen purge. The methanol content 
observed i n  these gas samples was not anticipated b u t  as mentioned e a r l i e r ,  
undoubtedly stems from residual solvent adsorbed on the model compound. 
The amount o f  methanol corresponds t o  less  than 0.5% of the starting 
material. 

Similarly, the gaseous product produced from the pyrolysis of (11) is  
shown i n  Table D . 1  t o  be furane (VI) for Samples 22, 28 and 29, deemed re- 
presentative f o r  the runs listed i n  Table I .  The only other principal 
product isolated f o r  each of the samples was a small amount of nitrogen 
remaining from purg i  rig the pyrolysis system (Figure 1 ) . 
D.2 CHARACTERIZATION OF VOLATILE SOLID AND LIQUID PYROLYSIS PRODUCTS 

Qual i t a t i  ve and semiquanti t a t i ve  characteri zation of the sub1 imed mat- 
t e r ,  W,, and the condensed l i q u i d  matter, W t ,  was accomplished by infrared 
analysis.  These s tudies  showed tha t  the principal vo la t i l e  l i q u i d  was 
cyclopentadiene ( V )  on pyrolysis of N-phenyl nadimide ( I )  and furane (VI) 
on pyrolysis of N-phenyl oxynadimide (11).  There was no trace of methanol 
in  these spectra.  As a r e su l t  in the material balance calculations of the 
pyrolysis of ( I )  presented below, kl, i s  considered t o  be 100% furane ( V ) .  

resulted i n  the estimate tha t  i t  contained 90% N-phenyl nadimide ( I )  and 
10% N-phenyl maleimide (111). A similar analysis of the sublimed matter 
obtained from pyrolysis of (11) showed t o  trace of (111) b u t  ratheu. was 
essenti  a1 ly  the s t a r t i ng  materi a1 a 

A semiquantitative analysis of the sublimed matter i n  pyrolysis of ( I )  

D.3 MATERIAL BALANCE CALCULATIONS FROM PYROLYSIS OF N-PHENYL NADIMIDE 

Using the findings presented i n  the previous sec t ionsg  i t  was possi- 
ble t o  perform a material balance of the analytical  consti tuents of N- 
phenyl nadimide ( I ) ,  e.g. cyclopentadiene ( V )  and N-phenyl ma’leimide (111) 

-1 20- 



NASA CR-72633 
11 926-601 3-RO-00 

in  order t o  determine the r a t i o  of these consti tuents i n  the pyrolytic re- 
sidues. 
in Table I ,  

This was accomplished using the gravimetric information provided 

For simplicity i n  identifying the various fract ions the following 

wsuperscript  
subscript  

code was used: 

refers  t o  the weight of material whose ident i ty  i s  given by the superscript  
e .g . ,  c = ( V ) ,  m = (111),  and the subscript  c i t e s  the location of the mat- 
e r i a l  a f t e r  pyrolysis. 
the s t a r t i ng  material ,  e.g. , 0.276 W o r n  
press i ons were used: 

Therefore, W E  = the weight of ( V )  equivalent in 
In this method the following ex- 

C C C C C w = wo - W t  - wg - ws r 

= (0.9) (.276) Ws 
wS 

C W t  = 0.276 W t  

w; = wg 

w r  m = w r  - w; 

(D-4) 

(D-5) 

The resu l t s  of t h i s  analysis are presented i n  Table D.11. 
show t h a t ,  in general, the molar r a t i o  i s  ~ 1 . 0 ,  o r  s l i gh t ly  less  which 
agrees we1 1 w i t h  comparable ra t ios  obtai ned from the elemental analysi s 
resu l t s  given i n  Appendix C, Page 9 2 .  I t  i s  most interest inq t o  note 
t h a t  in  sp i t e  o f  the h i g h  v o l a t i l i t y  of ( V )  a t  the pyrolysis temperatures, 
s ign i f icant  quant i t ies  remain in the pyrolytic residue, ye t  as shown i n  
Appendix C ,  i s  n o t  homopolymerized ( V )  
groups in  the pyrolytic polymer backbone. 

These data 

b u t  ra ther  i s  combined w i t h  (111) 

-1 21 - 



NASA CR-72633 
11926-6013-R0-00 

N 0 3 N c n c n C  

- 0 0 0 0 0 -  

0-cn co c? 03 0s 0 
. . e  . . .  
. .- - - - . . - , 

h r n 7 -  0 

0 0 0 0  0 

. ; f n c l r ~ - ~ n n l -  . . .  
-.-._ . .. . .. . 

0 b N r n ) C O I - N  

0 0 - 0 0 0 0  
0 h a d- d- Ne 0 

. . e . .  

I I I l l l I  
0 0 0 0 0 0 L n  
L n L n O O O O h  m m r n c r ) m m C \ I  

1 1 1 1 1 1 I  
U H H U H H H  

-1 22- 



NASA CR-72633 
11 926-601 3-RO-00 

APPENDIX E 
POLYMER SCREENING STUDIES 

The TRW Systems prior technology in the preparation of A-type polyimide 
materials was u t i l i zed  for  a detailed screening study o f  s ix  spec i f ic  formu- 
la t ion modifications. I t  was the objective of t h i s  study t o  define a s ingle  
candidate based on a trade-off of processing ease,  long-term exposure ,thermo- 
oxidative s t a b i l i t y ,  and hydrolytic s t a b i l i t y .  W i t h  this objective in mind 
nadic anhydride ( N A ) ,  ident i f ied as the best  prepolymer end capping group in 
the model compound s tudies ,  was reacted w i t h  the s ix  separate two component 
di anhydri de/di ami ne combi nations possible from benzophenone tetracarboxyl i c  
acid dianhydride (BTDA)  pyromellitic dianhydride (PMDA), methylene d i a n i -  
l i ne  ( M D A ) ,  oxydianiline ( O D A ) ,  and sulfodiani l ine (SDA) according t o  pre- 
vi ous 1 y defined techno1 ogy (Reference 1 ) . The products were characterized 
t o  ascertain which spec i f ic  material met the objectives. A detai led des- 
cr ipt ion of th i s  work i s  presented below. 

E . 1  VARNISH SYNTHESIS 

The amic-acid (A-A)  method below was used f o r  the varnish synthesis of 
1300 formulated molecular weight prepolymers: 

A q u a n t i t y  of diamine was dissolved i n  "'"11: and cooled t o  
20" with an ice  bath. To t h i s  solution was added NA in  
DMF, d u r i n g  which time the temperature was maintained a t  
30°C by means of an ice  bath. T h i s  mixture was t reated 
with the addition of a s lurry consisting of dianhydride 
i n  DMF. 
s t i r r e d  a t  ambient temperature f o r  one hour .  

The resul t ing 40% sol ids  loaded solution was 

E .2  PREPARATION OF MOLDING POWDERS 

The A-type polyimide prepolymer A-A solutions in DMF prepared as des- 
cr i  bed above were converted t o  imi di  zed moldi ng powders by the fo l l  owi ng 
procedure : 

The DMF varnish solution was stripped of solvent by 
evaporation on a ro t a ry  evaporator under vacuum a t  150°C 
for  45 minutes. The moist prepol residue was then heated 
i n  a vacuum oven f o r  three hours a t  140°C (vola t i le  
matter content 7.1%), followed by a 2-1/2 hour drying 
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"C, which gave a f inal  imidlzed molding 
vo4 a t i  1 e matter content as measured by 

weight loss as determin d by a 30-minute heat ing cy- 
c le  a t  600°F (315°C). 

E.3 PREPOLYMER MOLDING STUDIES 

The s ix  A-type polyimide molding powders prepared as described above 
were subjected t o  a temperature-pressure molding (curing) study discussed 
in 3.1.3 on Page 26. The undesirable products given by NA/SDA/MDA and 
NA/SDA/PMDA i n  the processing ranges of 540-590'F and 325-1000 ps i  elimin- 
ated these two candidates a t  t h i s  point from fur ther  consideration i n  the 
program. 
bel ow 

The remaining four candidates were characterized as described 

E .4 POLYMER CHARACTERIZATION 

E .4.1 Prepolymers 

The imidized prepolymers prepared as described i n  E.2 were screened 
fo r  desired s t ructure  by the methods described below. 

E.4.1.1 Infrared Analysis - All six prepolymer molding powders prepared as 
described in  E . 2  were screened fo r  the desired imide linkage, A representa- 
t ive  spectrum f o r  NA/SDA/Pt.lDA i s  given in Figure E-1 . The completeness of 
A-A r i n g  closure t o  imide i s  indicated by the strong absorption bands a t  
1770 and 1710 cm-' as discussed previously f o r  model imides in Section 2 e 

E.4.1.2 Nuclear Magnetic Resonance (n.m.r.) Analysis - The n.m.r. spectra 
of a l l  prepolymers prepared were determined. All of the prepolymer spectra 
were very s imilar  t o  tha t  of the NA/MDA/BTDA formulation shown i n  Figure E-2. 
In t h i s  spectrum the proton absorption peaks 7.4T, 6 . 6 ~ ~  and 3 . 8 ~  arise 
from the nadic end cap as discussed i n  Section A.2.5.3. 
this spectrum i s  a doublet centered a t  7.2~ stemming from the methylene pro- 
tons i n  methylene diani l ine (MDA) and two phenyl proton absorptions from 
the aromatic portions of MDA and BTDA i n  the 1 .7-3 .0~  region. The proton 
absorption peaks a t  7.5T and 6.0~ a r i se  from impurities i n  DMSO-d6 used as 
a solvent f o r  this prepolymer. 
spectrum was caused by the re1 a t i  vely poor sol u b i  1 i ty  of the prepolymer e 

Also, present i n  

The h i g h  degree of noise present i n  the 

Because of the i n t r a c t i b i l i t y  of the f u l l y  cured res in  specimenss i t  
was impossible t o  determine the n.m.r ,  spectra of these materials. 
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E .  4.2 Polymers 

The NA/MDA/BTDA, NA/ODA/BTDA, NA/MDA/PMDA and NA/ODA/PMDA successfully 
molded i n t o  consolidated, cured specimens as described in  E.3 were char- 
acter i  zed fo r  s t ruc ture ,  therrno-oxi dative stabi 1 i ty  and hydrolyti c s tabi  l i  ty 
as described below. 

E.4.2.1 Infrared Analysis - The infrared spectra of the formulations given 
above were essent ia l ly  identical  except fo r  some minor s h i f t s  i n  phenyl ab- 
sorption bands a r i s ing  from di f fe ren t  phenyl species in the dianhydride and 
diamine formulation modificdtions a 

the cured NA/MDA/BTDA specimen i s  shown i n  Figure E-3. The spectrum d i s -  
plays the expected s t rong  imide linkage absorptions a t  1780 and 1710 cm-l 
as well as strong phenyl absorptions i n  the 1500-1100 cm-l region. The ab- 
sorption band a t  .~2900 cm-l present in  model compounds (see Figure C-13, 
Page 11 6) and at t r ibuted t o  carbon-hydrogen s t re tch  i n  cycl oal i phati c rings 
i s  a l so  present i n  Figure E-3. The NA/MDA/BTDA spectrum i s  also very simi- 
l a r  t o  the absorption regions s ta ted  above t o  spectra of NA/ODA/BTDA, 
NA/MDA/PMDA and NA/ODA/PMDA spectra shown in Figures E-4, E-5, and E-6, 
respecti vely . 

A representative infrared spectrum f o r  

A t  this p o i n t  i t  i s  deemed appropriate t o  make a comparison of the 
cured A-type polyimide polymer s t ruc ture  with tha t  observed f o r  the model 
compound N-phenyl nadimide ( I ) .  The only technique sui table  f o r  compari- 
son o f  gross s t ructural  simi 1 a r i  t i e s  between the pyrolytic polymer pro- 
duced from the model compound ( I )  and the cured A-type polyimide polymers 
i s  by infrared analysis.  
ter polymers. 

T h i s  i s  due t o  the intractable  nature of the l a t -  

Unfortunately, when one t r i e s  t o  make a comparison of the spectra of 
the cured polymers (Figures E-3 t o  E-6)9 w i t h  the spectra of the polymer- 
ized model compound (Figure C-2) , the f ine  structure i n  most cases i s  
marked by non-resolution and/or the absorptions due t o  several d i f fe ren t  
types of phenyl rings and functional linkages Howeverg def in i te  similar-  
i t i e s  do ex i s t  and at tent ion i s  cal led t o  three principal areas.  Both the 
pyrolyzed polymer from ( I )  and the cured polymers exhibit :  1 )  def in i te  
imide backbone linkages as indicated by the absorption bands i n  the 1700- 
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1780 cm"' region 2)  def i n i  t e  hydrocarbon C-H s t re tching mode absorpti on 
i n  the  2850-3000 cm-' region, and 3) evidence fo r  C=C s t re tch  i n  the 1620- 
1630 cm"' region. The presence of 2 )  and 3) i n  both classes of polymers 
strongly suggests. t ha t  the same types of five-membered r i n g  o le f in  and 
endocycl i c hydrocarbon a r e  present i n  each e Consequently, TRW Sys tems 
fee l s  tha t  the  pyrolytic polymerization mechanism postulated and described 
in Section 2.3 holds t o  a large degree i n  cured A-t.ype polyimides as well 
as f o r  the simpler model, N-phenyl nadimide ( I ) .  

E.4.2.2 Thermogravimetric (TGA) Analysis - The NA/MDA/BTDA, NA/ODA/BTDA, 
NA/MDA/PMDA and NA/ODA/PMDA cured polymers were screened f o r  thermo-oxida- 
t i v e  s t a b i l i t y  i n  nitrogen and a i r .  The data obtained from the screening 
determinations i n  a i r  a r e  summarized below i n  Table E.1. 

TABLE E.1 
TGA DETERMINATION OF PERCENT RESIN WEIGHT LOSS 

I N  A I R  AS A FUNCTION OF  TEMPERATURE^ 

Temperature ("C)  a t  which the Given Percent 

10% 
Resin Weight Loss was Observed, Formulation 

! 20% i 30% i 40% 
I 
f NA/MDA/ BTDA 375 3 430 1 460 1 470 

NA/ODA/BTDA f 380 f 

NA/MDA/ PMDA 1 420 i 
i NA/ ODA/PMDA 410 

465 475 450 
505 520 480 i 

475 i 500 : 51 5 

: i 

aDetermi ned on powder samples (<5p diameter) empl ovi nu an Ami nco 
Thermoanalyzer u s i n g  a 3'Clml)n scan ra te  and 100 ml/min a i r  flow. 

These data showed prel iminary evidence t h a t  PMDA contai n i  ng materi a1 s were 
more thermo-oxidatively s tab le  i n  a i r ,  which was l a t e r  confirmed as des- 
cribed below i n  E.4.2.3. 
trend i n  the same direction as a i r  da ta ,  b u t  were not employed t o  postulate 
on s t a b i l i t y ,  because the most important c r i t e r i a  f o r  select ing a candidate 
res in  was s t a b i l i t y  in a i r .  Figure E-7 displays the thermogram recorded 
f o r  NA/ODA/BTDA i n  nitrogen and a i r o  which displays typical res in  weight 
loss  curves observed f o r  each of the four resins. 

The TGA curves determined i n  nitrogen showed a 
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E.4.2.3 Isothermal Aging Experiments - Each of the four cured A-type resins 
screened fo r  thermo-oxidative stabi 1 i t y  by TGA analysis described above was 
isothermally aged fo r  1000 hours i n  a i r  a t  400°F and 600°F as discussed i n  
Section 3.1.4.2 e 

Linberg Heavy Duty crucible furnace, Model 56311 ., connected t o  a tempera- 
ture  control ler  manufactured by the same company. The samples were aged 
i n a ha1 f -ci rcl  e form of approximately 1 /8-i nch thi  ckness and 1 /2-i nch 
diameter a f t e r  accurately weighing the specimens t o  the nearest tenth of a 
milligram. 
the furnace. Air a t  a 100 m?/min  flow .(monitored by a bubble-type indica- 
tor) was introduced through a capi l lary tube i n t o  the bottom of the furnace 
and allowed t o  flow upward through the furnace, exi t ing through the top. 
The temperature was monitored by a thermometer calibrated against an NBS 
standard. The thermometer b u l b  was inserted in to  the furnace t o  a p o i n t  
approximating the center of the sample array. 
the resin weight loss  was monitored by removing the samples every 72-96 
hours, allowing them t o  reach 25"C, then weighing them t o  the nearest tenth 
of a milligram. After each weighing the samples 
t o  top on the t r e e  to  ensure t h a t  each was adequately exposed to  the a i r  
current a t  the desired temperature. 

The aging experiments were conducted employing a 

The samples were arranged on a tree-type set-up and placed i n  

During the aging experiments, 

were rotated from bottom 

After the 1000 hour isothermal aging a t  4OO0F, the samples showed l i t -  
t l e  physical appearance change. However, the samples aged a t  6 O O O F  d is-  
played many micro-cracks i n  a l l  surface edges and had warped s l igh t ly  to- 
wards the center.  The  data a r i s ing  from this 1000-hour isothermal aging 
study in air  ident i f ied the 1300 FMW NA/MDA/PMDA formulation as most thermo- 
oxidatively s tab le  resin candidate based upon the weight retention proce- 
dure measurements described above 

E.4.2.4 Hydrolytic S tab i  l i  t y  Determinations - All imidized prepolymer and 
polymer samples prepared as described previously in this Appendix were sub-  
jected to  hydrolyti c s tabi 1 i t y  studies * The resu l t s  of these stabi 1 i ty 
studies were reported and discussed i n  Section 3.1.4.3 and recorded i n  
Table I'd on Page 32. 

The data were obtained by the general procedure as follows: 
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ples were pulverized and gassed through a 150 mesh 
screen. The material was dried above 140°C i n  a vacuum 
oven, then weighed t o  the nearest tenth of a milligram. 
A quantity of water was heated t o  boiling, then the sample 
was added i n  one portion a t  approximately a 4% w/w sample/ 
water r a t io .  The sample was boiled f o r  two hourss then 
f i l t e r e d  ho t .  The sample was dried overnight under vacuum 
a t  80°C, then weighed t o  the nearest tenth of a milligram. 
The percent resin weight  loss  reported i n  Table IV 
r a t i o  o f  weight loss d i v i d e d  by i n i t i a l  weight x 100. 

is  a 

A1 1 formulations containing PMDA investi  gated by this procedure demonstrated 
hydrolytic s tabi  1 i ti  es superior t o  t h a t  demonstrated by the resi  ns prepared 
from BTDA. 

E.5 SELECTION OF THE BEST A-TYPE POLYIMIDE FORMULATION 

All data reported previously i n  this Appendix and i n  Section 3.1 
were evaluated and a logical choice of the best candidate fo r  fur ther  con- 
sideration i n  the program was establ ished,  The 1300 FMW NA/MDA/PMDA formu- 
1 a t i  on demonstrated reasonable processabi 1 i t y  and excel 1 en t  thermo-oxi d a t i  ve 
and hydrolytic s t a b i l i t i e s .  
bination was chosen f o r  prepolymer s tudies .  

Consequently, this spec i f ic  ingredient com- 
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APPENDIX F 
PREPOLYMER STUDIES 

The NA/MDA/PMDA A-type polyimide formulation evaluated t o  be the best 
candidate resin f o r  investiaation i n  the remainder of the program as des- 
cribed i n  Appendix E was subjected t o  a prepolymer synthesis and character- 
i zation study. Three other prepolymer formulated molecular weights (FMW's) 
i n  addition t o  the 1300 FMW were evaluated. The three FMW's chosen were 
1000, 1500, and 2000 which were deemed r e a l i s t i c  prepolymers f o r  investi- 
gation of processabili ty,  thermo-oxidative s t a b i l i t y ,  and hydrolytic s t a -  
b i l i t y  a t  FMW's above and below the original 1300 FMW resin. 
gained from the polymer screening and characterization studies as des- 
cribed i n  3.1 and Appendix E as well as pr ior  TRW Systems technology gen- 
erated on P13N were u t i l i zed  t o  investigate the 1000, 1500, and 2000 FMW 
prepolymers of NA/MDA/PMDA as described below. 

The i n s i g h t  

F.1 VARNISH PREPARATION 

The experimental procedure detai 1 ed i n E .  1 was u t i  1 i zed t o  prepare 
NA/MDA/PMDA prepolymers a t  a 40% w/w sol ids  loading i n  DMF a t  FMW's of 
1000, 1500 and 2000. The varnish v iscos i t ies  were determined w i t h  a 
Brookfield viscometer and a re  reported i n  3.2.1 on Page 34. 

F.2 PREPREG DRYING AND IMIDIZATION STUDIES 

The experimental varnishes prepared as described above were u t i l i zed  
t o  prepreg Style  181 E-glass cloth containing A-1100 s o f t  amino-silane 
finish f o r  prepolymer/prepreg drying and imidization studies e 

The E-glass cloth was prepregged employing a simple one-step hand d i p  
procedure, followed by a drying cycle a t  325°F i n  a forced a i r  t o  remove 
DMF. 
sui table  f o r  laminate processing. 
1500, and 2000 FMW) of NA/MDA/PMDA was investigated fo r  time necessary t o  
ensure removal of DMF a t  325°F and imidize the A-A linkages a t  475°F. 
Tab1 e F I summari zes imi d i  zat i  on data obtained a t  these temperatures f o r  
the 1500 FMW material. 

The dried prepreg was then imidimed a t  475°F t o  give prepreg material 
Each A-A prepolymer varnish (c .a . ,  1000, 

DMF removal was monitored by the disappearance of 
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.~ 

TABLE F.1 
1500 FORMULATED MOLECULAR WEIGHT PREPOLYMER IMIDIZATION STUDY 

Time/Temperature , Imidization by I Infrared 
Variables Infrared Analys i s Spec tr um 

2 min  @ 325°F Incomplete Figure F-1 

2 m i n .  @ 325°F and 3 Complete Figure F-3 
2 m i n .  @ 475°F 
4 rnin. @ 325°F and : Comp 1 e te  Figure F-4 
4 m i n e  @ 475°F 

I 4 m i n e  @ 325°F I Incomplete 1 Figure F-2 

: 
1 

a DMF absorption band a t  1260 0 - l .  As can be seen i n  Figure, F-3 versus 
Figure F-4, a cycle of four minutes a t  475°F was necessary t o  reduce 
1260 cm-' DMF absorption t o  a mere shoulder. Identical behavior was ob- 
served fo r  1000 and 2000 formulated molecular weight materials as can be 
seen by referr ing to  Figures F-5 and F-6, respectively.  The four-minute 
heating cycle a t  325"F, followed by a four-minute c-ycle a t  475°F gave a re- 
ma in ing  to ta l  prepreg vo la t i l e  matter content of approximately 2-3% (as 
determined by heatlng a t  600°F for 30 minutes) f o r  each formulated molecular 
weight prepolymer investigated. This v o l a t i l e  matter content range was 
judged as su i tab le  for i n i t i a l  laminate studies. Therefore, the imidizat ion 
study experimental data were d i rec t ly  applicable t o  Task 111 preliminary 
fabricat ion studies as described i n  Section 4. 

th i s  

F. 3 POLYMER CHARACTERIZATION STUDIES 

The NA/MDA/PMDA formulation a t  1000, 1500, and 2000 FMW's was evalu- 
ated i n  neat prepolymer and cured polymer configurations f o r  comparison of 
data w i t h  the 1300 FMW resin prepared and characterized as described i n  
Appendix E .  

F.3.1 Prepolymer Preparation 

Portions of the 1000, 1500 and 2000 FMW NA/MDA/PMDA varnishes prepared 
as described i n  E.1 were converted t o  imidized powders by the method des- 
cribed i n  E.2 * Characterization i s  described i n  F.3.3. 
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F,3.2 Cured Polymer Molding Studies 

The three imidized prepolymer powders were subjected t o  a molding study 
employing molding variables defined fo r  the 1300 FMW species as described 
i n  E.3. 
325-1000 psi f o r  a curing cycle of 30 minutes, only the 1000 FMW could be 
processed in to  a consolidated specimen e However , this par t i  cul ar  materi a1 
eas i ly  molded i n t o  a plug of Barcol hardness equal t o  48-50. The implica- 
t ions of the molding study i s  discussed i n  Section 3.2. 

Employing molding temperatures of 590-600°F and pressures of 

F.3 - 3  Characterization of Prepolymers and Polymers 

The prepolymers and polymers prepared i n  this study were analyzed as 
described below. 

F. 3.3.1 Infrared Analysi s - The prepolymer mol di  ng powders were screened 
by infrared analysis t o  es tabl ish whether complete imidization of the A-A 
linkages had occurred. The spectrum obtained f o r  the 1500 FMW prepolymer 
i s  representative f o r  the group and i s  given i n  Figure F-7. The spectrum 
is  essent ia l ly  identical  t o  t h a t  obtained fo r  the same FMW i n  the imidiza- 
t ion s tudies  (Figure F-4) and confirmed complete formation o f  imide l i n k -  
ages e 

The three cured polymers obtained i n  the molding studies were also 
screened f o r  s t ructure  by infrared analysis.  
represent the spectra obtained f o r  the 1000, 1500 and 2000 FMW formulations, 
respectively. 
(Figure E-5 , Page 130). 
to  be s ign i f icant  i s  the in tens i ty  of the absorption band i n  the 2750- 
3000 cm-’ region. T h i s  absorption i s  primarily due t o  -CH2- s tretching i n  
cycl opentene or  nadi c species 
region decreases as the FMW increases,  because less  nadic anhydride ( N A )  
monomer i s  introduced in to  the material .  

Figures F-8, F-9, and F-10 

Each i s  almost identical  t o  tha t  determined on the 1300 FMW 
The only variation i n  the spectra which appears 

As expected, absorption in tens i ty  i n  t h i  s 

F.3.3.2 Thermo-Oxidative S tab i l i  t.y - The thermo-oxidative s t a b i l i t y  o f  the 
cured polymers was screened by thermogravimetric analysis (TGA) i n  a i r .  
The resu l t s  of the screening are displayed i n  Figure F-11 t o  allow compari- 
son of the 1000, 1500, and 2000 cured FMW species wi t h  the previously 
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prepared 1300 cured F W material 
peared t o  be consistently %5OoC less s tab le  than the three higher molecular 
weight  materials which a l l  demonstrated higher resistance t o  a i r  oxidation 
by TGA characterization. The concern f o r  this indication of lessened ther- 
mo-oxidative s t a b i l i t y  of the 1000 FMW cured polymer as opposed t o  cured 
NA/MDA/PMDA materi a1 s derived from h i  gher FMW prepolymers ( c  .a e 1300-2000) 
was al leviated by isothermal aging i n  a i r  a t  6OOOF. These isothermal aging 
data a re  di  scussed bel ow a 

As can be seens the 1000 FMW resin ap- 

The resu l t s  of the TGA s.creening of NA/MDA/PMDA cured resin materials 
prepared indicated t h a t  the cured polymer prepared from 1000 FMW prepoly- 
mer m i g h t  not demonstrate comparable 1 ong-term thermo-oxi dati  ve s tabi  1 i t y  
a t  6OOOF t o  tha t  shown by the 1300 molecular weight cured resin. This po- 
t en t i a l  deficiency of the readily processed 1000 FMW material was investi- 
gated by subjecting a sample t o  the identical  isothermal aging conditions 
employed f o r  the 1300 FMW species (c .a . ,  aging a t  600°F i n  an a i r  flow of 
100 m l / m i n ) .  A comparison of the resin weight  loss data f o r  the 1000 and 
1300 FMW materials i s  given i n  Table F.11. 

TABLE F.11 

COMPARISON OF RESIN WEIGHT LOSS DATA FOR 1000 AND 1300 
FORMULATED MOLECULAR WEIGHT NA/MDA/PMDA CURED POLYMER PLUGS 

Duration of Aging 
a t  6OOOF i n  Aira 

80 
160 
240 
300 

a U t i l i z i n g  a i r  flow of 100 ml /min .  

As can be seen from these da ta ,  the cured resin prepared from 1000 
FMW prepolymer demonstrated thermo-oxidative s t a b i l i t y  i n  a i r  a t  600°F a f t e r  
300 hours a t  a level almost double t h a t  of the cured 1300 molecular weight 
material a Cured specimens prepared from 1500 and 2000 FMW prepolymers 
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demonstrated g rea te r  r e s i n  weight  losses than the  1000 and 1300 m a t e r i a l s  
under i d e n t i  c a l  ag i  ng condi t i o n s  e 

F.3.3.3 H y d r o l y t i c  S t a b i l i t y  - The h y d r o l y t i c  s t a b i l i t y  o f  t he  cured r e s i n s  
prepared f rom 1000, 1500 and 2000 FMW prepolymers was assessed by measure- 
ment o f  weight  l o s s  a f t e r  a two-hour immersion i n  b o i l i n g  water by the  method 
descr ibed i n  E.4.2.4. The res i s tance  t o  aqueous h y d r o l y s i s  was e x c e l l e n t  
f o r  each o f  t h e  NA/MDA/PMDA cured samples. The dqta obta ined a re  summar- 
i z e d  i n  Table F.111 a long w i t h  the  we igh t  l o s s  numbers p r e v i o u s l y  de te r -  
mined f o r  t h e i r  respec t i ve  prepolymers and those f o r  t he  1300 FMW mate r ia l s ,  

TABLE F.111 
HYDROLYTIC STABILITY OF NA/MDA/PMDA 

PREPOLYMERS AND CURED RESINS 

H y d r o l y t i c  S tab i  1 i ty 

1300 Prepolymer 

1 500 Prepol ymer 

Cured Resin 

Cured Resin 

2000 Prepolymer 
Cured Resin 

1.3 
2.3 

2.5 
0.8 

1.7 
0.7 

~ - 

F.4 SELECTION OF ONE PREPOLYMER FORMULATED MOLECULAR WEIGHT 

The data i nc luded  i n  t h i s  Appendix were evaluated and the  1000 FMW 
NA/MDA/PMDA r e s i n  was se lec ted  f o r  a1 1 remaining program tasks 
cussion o f  the  choice o f  t h i s  r e s i n  i s  descr ibed i n  Sec t ion  3,2.6$ Page 38. 

The d i s -  
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APPENDIX G 
PREPREG AND LA INATE CHARACTERIZATION METHODS 

T h i s  appendix provides details o f  the test methods used t o  character- 
ize prepregs and composites prepared d u r i n g  this project.  These methods 
have wide use i n  the laminate and composite processing industry. 

G.  1 METHODS USED FOR CHARACTERIZATION OF PREPREGS 

G a 1 e 1 Vol a t i  1 e Matter Content 

Volati le matter content was obtained by weight loss determinations on 
4-inch square pieces of prepreg a f t e r  30 minutes exposure in an a i r  circu- 
la t ing  oven maintained a t  600°F. 

G.1.2 Resin Solids Content 

Resin so l id  content was obtained from weight loss determinations of 
the specimens a f t e r  tes t ing  fo r  vo la t i l e  matter content by heating i n  a i r  
a t  1150°F. 

6.1.3 Resin Flow 

Prepreg was cut 4-inch square w i t h  f i be r  or ientat ion a t  45" and stacked 
6-ply thick. These pl ies  were molded a t  6 O O O F  under pressures of 200 and 
1000 p s i g .  After molding, the resin f lash was removed and the resin flow 
was calculated as follows: 

F = (#' w2) x 100 
*1 

klhere: 

F = resin flow, % w/w 
W1 = weight of prepreg sample, g 
M2 = weight of molded sample a f t e r  removal of res in  f l a sh ,  g 

6.2 CHARACTERIZATION OF PREPARED FABRICATED CO 

G 2 e 1 Fl exural Test Procedures 

A1 1 flexural t e s t s  were performed i n  accordance w i t h  AST 
a 3240-1 span-to-depth r a t io .  Specimen deflections were determined from 
the cross-head motion. 
a i r  ci rcul a t i  ng temperature chamber mounted on the crosshead 

Elevated temperature t e s t s  were performed i n  an 
Specimens 
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were preconditioned t o  the t e s t  temperature by heating i n  the test chamber 
for  30 minutes p r i o r  t o  test. 

6.2.2 Shor t  Beam Shear Test Procedures 

All short  beam shear strength t e s t s  were performed generally as des- 
cribed in ASTM D2344 except t h a t  f l a t  specimens were used. Elevated tests 
were performed in the same manner as described i n  Section 5.3.2 for  flexural 
t e s t s  a 

6.2.3 Weight Loss Determinations 

Flexural and shear test  coupons were weighed before and a f t e r  thermal 
aging. The percent weight loss was calculated as follows: 

- w2 x 100 W1 
w1 

Weight Loss = 

Where: 

W, = original weight of composi t e  specimen 
W 2  = weight of composite specimen a f t e r  thermal ag ing ,  

6.  2.4 Speci f i  c Gravity and Densi t y  

Specific gravity of the composites was determined i n  water in  accord- 
ance with ASTM D792. The density (g/ml) was calculated as follows: 

d = (0.997) ( spec i f ic  gravity) 

6.2.5 Resin Content 

The resin content of composite specimens was determined by acid diges- 
t ion.  The specimens were boiled in concentrated su l fur ic  acid for  30 min- 
utes and then washed in d i s t i l l e d  water a f t e r  decanting the su l fur ic  acid,  
This was repeated three times a f t e r  which the f ibers  were f ina l ly  washed 
i n  acetone and dried for one hour a t  300°F. 
culated as follows: 

Resin content (% w/w) was cal-  

Resin Content = w1 - w2 x 100 
w1 

Where: 
Ml = original composite specimen weight 
W 2  = weight of f ibers  a f t e r  acid digestion of the resin matrix, 
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Previous experiments show t h a t  no correct ion i s  necessary f o r  loss o f  
graphi te weight dur ing t h i s  treatment, 

6.2.6 Void Content 

Void contents o f  the composi tes were ca l  cul  ated us i  ng addi ti ve vo l  umes 
o f  r e s i n  and graphi te f i b e r  as fo l lows: 

Woid Content, % = (1  - dm/dc) 100 

Where: 

= measured densi ty dm 
dc = composite densi ty calculated assuming zero void content, i .e., 

fr - 1 -  - -  fr 

dC dr dg 
+ -  

Where: 

f i s  the f r a c t i o n  o f  r e s i n  o r  graphi te ind icated by the subscr ip t  r 
o r  g, respect ively,  
dr = densi ty o f  neat r e s i n  1 -30 g/ml 

= densi ty o f  Thornel 50s reinforcement, 1.63 g/ml 
dg 
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APPENDIX H 
STATISTICAL TREATMENT OF LAMINATE MECHANICAL PROPERTIES 

This appendix describes the s t a t i s t i c a l  treatment used t o  analyze the 
d a t a  generated in  Task I11 and IV. 
o f  variance employed t o  determine the processing conditions which caused a 
s ign i f icant  e f f ec t  on the mechanical properties for  the Task I11 prelimin- 
ary fabrication s tudies  and evaluatior! o f  the e f f ec t  of aging on graphite 
f i  ber reinforced 1 ami nates prepared usi ng the candi date polyimi de sys tem 
recommended i n  t h i s  program. 

H . 1  ANALYSIS OF PROCESSING INFORMATION 

Specif ical ly ,  i t  discusses the analysis 

The raw data generated d u r i n g  the investigation o f  the processes para- 
meters i n  the preliminary fabrication studies was in  the form of a four- 
fac tor ,  two-level with replication experimental design. This design i s  
easi ly  t reated by the analysis of variance (Reference 11 ) t o  determine 
s t a t i s t i c a l l y  s ign i f icant  changes. The  analysis of variance of e f f e c t  of 
processing parameters on the flexural strength and modulus a t  room tempera- 
tu re  and 550°F, shear strength a t  room temperature and void content are  
given i n  Tables H .I through H .VI e I t  i s  in te res t ing  t o  note t h a t  w i t h  the 
exception of the void content only the si ngle parameters of temperature, 
cure time, cure pressure, and post cure were s ign i f icant  a t  the 99% confi- 
dence level and a large number of interact ions were s ign i f icant  i n  the void 
content analysis of variance I) 

To f a c i l i t a t e  the analysis of variance, 1 )  the pooled standard devia- 
t ion of a s ingle  measurement (as obtained on q u i  ntupl i cate  determinations 
on the same panel) was not u t i l i zed  i n  the analysis of variance and 2 )  the 
repl icat ion ident i f ied i n  Tables H.1 through H.VI was obtained u s i n g  the 
separate fabricated panels. Consequently, the rep l ica te  variance is tha t  
obtainable i n  preparing identical  panels. A t e s t  of the differences i n  the 
repeatabi 1 i ty  ( e -  g the variance associated w i  t h  preparation of identical  
panels) as compared t o  the repeatabi l i ty  of measurements on a s ingle  panel 
was conducted and found t h a t  there were no s ign i f icant  s t a t i s t i c a l  d i f f e r -  
ences (by analysis of variance). 
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TABLE H.1 
ANALYSIS OF VARIANCE FOR EFFECT OF PROCESSING 

PARAMETERS ON FLEXURAL STRENGTH AT ROOM TEMPERATURE 

Source 
Between Temperatures ( t )  
Between Cure Times ( d )  
Between Cure Pressures ( p )  
Between Post Cures ( c )  
2-Fold Interactions:  t d  

t P 

dP 
dc 

P C  

3-Fold Interactions:  t d p  
tdc 
t P C  

dPC 
4-Fol d Interacti  on: t d p c  
Rep1 icates 
Totals 

t c  

Sum o f  
Squares 

0.690 
20 e 320 

185.763 
41.178 
0.525 

14.715 
1.088 

13.913 
0.340 
0.750 
2.153 

38.063 
36.765 
13.650 
0.579 

107 885 
478.377 

*Significant a t  the 95% confidence level 
*?Significant a t  the 99% confidence level 

Degrees o f  
Freedom 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

16 
31 

Variance 
0 -69 

20.32 
85.76 
41.18 

0.53 
14.72 
1.09 

13.91 
0.34 
0.75 
2.15 

38.06 
36 a 77 
13.65 
0.58 
6.743 - 

F 

0.10 
3.01 
17 a 54** 
6.10" 
0.07 
2.18 
0.16 
2.06 
0.05 
0.11 
0.32 
5.04" 
5.45" 
2.08 
0.86 

1111 
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TABLE H.11 
ANALYSIS OF VARIANCE FOR THE EFFECT OF PROCESSING 

PARAMETERS ON FLEXURAL STRENGTH AT 55OOF 

Source 
Between Temperatures ( t )  
Between Cure Times (d )  
Between Cure Pressures (p )  
Between Post Cures ( c )  
2-Fold I n t e r a c t i o n s :  t d  

t P 

dP 
dc 

P C  

3-Fold I n t e r a c t i o n s :  t dp  
t d c  

t P  C 

dPC 
4-Fold I n t e r a c t i o n :  tdpc 
Rep1 i cates 
To ta l s  

t c  

Sum o f  
Squares 
0.125 

45.601 
77.50 
32 a 000 
37.411 
0.061 

11.520 
19.220 
38.281 
4 e 351 
0 e 045 
1.531 
0.551 

35 e 280 
9.247 

175 e 250 
487.975 

Degrees o f  
Freedom 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

16 
31 

0.13 
45 e 60 
77.50 
32 .OO 
37.41 
0.06 

11.52 
19.22 
38.28 
4.35 ' 

0.05 
1.53 
0.55 

35 a 28 
9.25 

10.95 

*S i  gni  f i  cant  a t  95% conf idence l e v e l  
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TABLE H.111 
ANALYSIS OF VARIANCE FOR EFFECT OF PROCESSING 

PARAMETERS ON FLEXURAL MODULUS AT ROOM TEMPERATURE 

Source 
Between Temperatures ( t )  
Between Cure Times ( d )  
Between Cure Pressures ( p )  
Between Post Cures (c) 
2-Fol d Interacti  ons : t d  

t P  

dP 
dc 

P C  

3-Fold Interactions : t d p  
tdc 
t P C  

dP C 

4-Fold Interaction: tdpc 
Rep1 i cates 
Totals 

t c  

Sum o f  
Squares 

171.588 
0.263 

350 e 46 3 
2 588 
1.853 
0.428 
0.878 
0 228 
0.038 
0.813 
5.363 
9.138 
7.508 
2.153 
0.425 

56.045 
609 e 772 

x lo2  
Degrees o f  

Freedom 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

16 

Variance 

171.59 
0 $26 

350.46 
2.59 
1.85 
0.43 
0.88 
0.23 
0.04 
0.81 
5.36 
9.14 
7.51 
2.15 
0.43 
3 A03 

x lo2 F 
48 e 98"" 
0.07 

100. oo** 
0.74 
0.53 
0.12 
0.25 
0.06 
0.01 . 

0.23 
1.53 
2.61 
2.14 
0.61 
0.12 

Jt.k Significant a t  the 99% confidence level 
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TABLE H.IV 
ANALYSIS OF VARIANCE FOR EFFECT OF PROCESSING 

ETERS ON FLEXURAL MODULUS AT 550°F 

Sum of 
Squares Degrees of 1 Wari ance 

Source x lo2 Freedom I x 10' 
3etween Temperatures ( t )  263,351 1 263.35 

I 1.53 3etween Cure Times ( d )  1.531 1 I 

3etween Cure Pressures ( p )  282.031 
jetween Post Cures (c )  
3-Fol d Interactions : t d  

t P  
t c  

dP 
dc 
P C  

3-Fold Interactions: t d p  
tdc 

t P C  

dPC 
4-Fold Interaction: tdpc 
Repli cates 
Totals 

1.361 
I 6.301 1 

0.361 
0.151 
3.511 
0.001 
0.281 
4.061 
2.531 
1.051 
4.351 
0.665 

, 46.380 
' 617.919 

1 ~ 282.03 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1.36 
6 -30 
0.36 
0.15 
3.51 
0.00 
0.28 
4.06 

F 
90.9"" 
0.52 

97 3** 
0.46 
2.17 
0.12 
0.05 
1.21 
0 .oo 
0.09 
1.40 

2.53 ' 0.87 
1.05 j 0.36 
4.35 1.50 

1 :I 0.67 
16 I 2.899 
31 

0.22 

**Significant a t  the 99% confidence level 
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TABLE H.V 
ANALYSIS OF VARIANCE FOR THE EFFECT 

OF PROCESSING PARAMETERS ON SHEAR STRENGTH 

Between Temperatures (t) 
Between Cure Times ( d )  
Between Cure Pressures ( p )  
Between Post Cures ( c )  
2-Fol d Interactions : t d  

t c  

dc 

P C  

3-Fold Interactions:  t d p  
tdc 
t P C  

dPC 
&Fold Interaction: tdpc  
Rep1 i cates 
Totals 

Sum of 
Squares 
6 -301 
2.645 
0.245 
0.911 . 
0 e 245 
0.080 
0.211 
0.281 
0.000 
0.405 
0.101 
0.180 
0.510 
0.001 
0.203 
3.830 

Degrees o f  
Freedom 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

16 
31 

Variance F 
6,30 I 26.33"" 
2.65 !11.05** 
0.25 
0.91 
0.25 
0.08 
0.21 
0.28 
0.00 
0.41 
0.10 
0.18 
0.51 
0.00 
0.20 
0.239 

1.02 
3.80 
1.02 
0.33 
0.88 
1.17 
0.00 
1.69 
0.42 
0.75 
2.13 
0.00 
0.84 

**Si gn i  f i  cant a t  the 99% confidence level 
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TABLE H.VI 
ANALYSIS OF VARIANCE FOR EFFECT OF PROCESSING 

PARAMETERS ON VOID CONTENT 

I I Sum of Degrees of  
Source , Squares [ Freedom Variance: F 

I Between temperatures ( t )  0.383 1 0.38 ! 1.03 
Between Cure Times ( d )  
Between Cure Pressures ( p )  
Between Post Cures ( c )  
2-Fold Interactions:  t d  

t P  
t c  

4.133 1 I 4.13 
22 950 1 22 -95 
0.690 1 ' 0.69 

. 0.053 1 0.05 
4 ., 565 1 ! 4.57 
1.488 1 1.49 

dp 7.125 1 
dc i, 4.728 1 
P C  ' 1.240 1 

1, 

3-Fold Interactions:  t d p  
tdc 

t P C  

dPC 
4-Fold Interaction: tdpc 
Rep1 i cates 
Total s 

1.768 1 
4 e 883 1 
6 -580 1 
1.240 1 
0.869 1 
5.915 1 16 

68.610 

7.13 
4.73 
1.24 
1.77 
4.88 
6.58 
1.24 
0.87 
0.3697 

11.18** 
62,1** 

1.86 
0.14 

12.35"" 
4.02 

19 e 27"" 
12.79** 
3.35 
4.78" 

13.21"" 
1 7 e 80"" 
3.35 
2.34 

*Significant a t  the 95% confidence level 
**Significant a t  the 99% confidence level 
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A summary of the pooled average of the individual processing para- 
meters fo r  the individual property i s  given i n  Table XI1 (Page 49 ) to- 
gether w i t h  the repeatabi l i ty  and pool standard deviation of a s ingle  
measurement, A summary of the s t a t i s t i c a l l y  s ign i f icant  processing condi- 
tions and t h e i r  e f f ec t  on the property under consideration is presented i n  
Table XI11 (Page 51) together w i t h  an indication of the processing condi- 
t ions t o  be empl oyed f o r  provi d i  ng improved properti es . 
H.2 STATISTICAL TREATMENT O F  GRAPHITE FIBER REINFORCED COMPOSITE 

P ROPE RTY DATA 

The resu l t s  of mechanical property determinations on the Thornel 50s - 

Unaged specimen properties obtained a t  77°F 
1000 FMW NA/PMDA/MDA composites prepared from Task IW are presented i n  
Tables H.VII through H,XI. 
and a f t e r  heat soaking f o r  30 minutes a t  400°F and 60Q"F are presented i n  
Table H.VII. The resu l t s  of mechanical property testing of specimens aged 
a t  400°F and 600°F f o r  periods up t o  1000 hours and tested a t  400°F and 
600°F are presented i n  Tables H.WII1 through H.XI. 

A considerable degree of var iab i l i ty  were observed i n  the properties of 
repl icate  specimens. 
than those from Panels 3 and 4, A summary of mechanical property da ta  i s  
presented i n  Table H.XII and ident i f ies  the var iab i l i ty  of the measurement 
together w i t h  a t e s t  of extreme values fo r  a spec i f ic  group of determina- 
tions 
the equation 

In general, the resu l t s  from Panels 1 and 2 are lower 

The extreme data was evaluated by the u-test i n  accordance w i t h  

where: 

= the difference between the extreme value and the average valueg 

= the pooled standard deviation of the measurement. 

'max 

0 

and 

The individual extreme data which resulted i n  an absolute value of u larger  
than 1.8 ( ~ 8 %  o f  the population of a normal error curve) were considered 
t o  be "wild" and rejected from the population. Specific specimen resu l t s  
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TABLE H.YII 
MECHANICAL PROPERTIES OF COMPOSITES PRIOR TO AGING 

Test 
Temperature 

"F 

77 

400 

600 

Specimen 

1 - 13 
2 -  3 
2 - 18 
3 -  7 
4 - 15 

1 -  1 
2 -  8 
2 - 14 
3 - 14 
4 - 16 

1 -  6 
1 -  9 
2 - 11 
3 -  4 
3 - 1 2  

Flexural 
Strength 

Ks i 
94.3 
99.1 

107.4 
109 -6 
177.3 

88.3 
101.9 
117.9 
100.7 
124.7 

65.4 
73.7 

101.5 
101.4 
80.4 

Flexural 
Modulus Specimen 

Ms i - 
22.1 1 - 4  
21 .Q 3 - 2  
22.5 3 - 4  
23.9 3 - 5  
25.3 3 - 7  

18.9 1 - 20 
22.8 2 - 20 
23.7 3 - 20 
18.4 4 - 20 
25.5 4 - 21 

16.8 1 - 21 
17.3 2 - 21 
21.2 3 - 21 
22 .o 3 - 22 
21.5 4 - 22 

Shear 
Strength 

Ks i 
3 -6 
5 a n  

5.5 
5.4 
5.5 

3.6 
4.3 
5.3 
5.4 
5.1 

2 .2  
3.2 
4.6 
4.2 
4.4 

rejected were f lexural  specimens 1-159 1-18, 3-8 and 3-15 and shear speci- 
mens 1-13. The f lexural  specimen 4-16 had an absolute value of >1.8 b u t  
was not rejected because the direction of the extreme value was pos i t ive ,  
physically a more l i ke ly  vaUd number. In general there a re  more pos- 
s ible  processing variations t h a t  will  result i n  a lower value than i n  a 
higher value. The revised data a r e  presented i n  Table XVI (Page 50) a 
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